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Abstract. Farsighted formulations of coalitional formation, for instance by Harsanyi
(1974) and Ray and Vohra(2015), have typically been based on the von Neumann-
Morgenstern (1944) stable set. These farsighted stable sets use a notion of indirect
dominance in which an outcome can be dominated by a chain of coalitional ‘moves’ in
which each coalition that is involved in the sequence eventually stands to gain. Dutta and
Vohra(2016) point out that these solution concepts do not require coalitions to make op-
timal moves. Hence, these solution concepts can yield unreasonable predictions. Dutta
and Vohra (2016) restricted coalitions to hold common, history independent expecta-
tions that incorporate optimality regarding the continuation path. This paper extends the
Dutta-Vohra analysis by allowing for history dependent expectations. The paper pro-
vides characterization results for two solution concepts corresponding to two versions
of optimality. It demonstrates the power of history dependence by establishing non-
emptyness results for all finite games as well as transferable utility partition function
games. The paper also provides partial comparisons of the solution concepts to other
solutions.
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1. INTRODUCTION

The von Neumann-Morgenstern (vNM) stable set has had a distinguished standing as
a solution concept in cooperative game theory. It is based on the notion of coalitional
dominance, with one social state y dominating state x if some coalition has the power
or ability to change the state from x to y and all members of the coalition prefer y
to x. von Neumann and Morgenstern identified a stable set as one which satisfied two
properties properties: (1) internal stability in the sense that no stable outcome dominates
any other stable outcome; (2) external stability in the sense that every outcome not in
the stable set is dominated by some stable outcome. Of course, the core, the set of states
which are not dominated by any other state, must be contained in any stable set. The
predominant position of the vNM stable set is evident from the large literature on this
solution concept.2

Both the core and the stable set are myopic solution concepts in the sense that a deviating
coalition only cares about the immediate consequence of a deviation. But if coalition S
decides to change x to y because the latter gives strictly higher payoffs to each member
of S, it does not ask itself whether y itself is a stable outcome. Conversely, the implicit
rationale of the vNM set is that if x is not dominated by any coalition, then x must be in
the solution set since no coalition objects to it. Harsanyi (1974) criticised the underlying
logic by pointing out the following. Suppose coalition S has the power to enforce y
from x. Suppose also that at least one member of S does not gain from the move to
y. Then, myopic solution concepts would decree that S will not in fact effect the move
from x to y. But now suppose that some state z which is deemed stable dominates y
and all members of S strictly prefer z to x. Harsanyi argued that S should in fact
move the state from x to y expecting the “final” outcome to be z. In other words, a
non-myopic or farsighted approach to coalitional stability negates the logic underlying
solution concepts such as the vNM stable set.

Following Harsanyi, there has been a large literature on solution concepts that are based
on “farsighted” individuals who base their decisions on whether to deviate from the
current status not on the immediate consequence of the deviation, but on how they will
fare at the “final” outcome following further deviations by other coalitions. 3 A common
feature in much of this literature is the absence of any extensive form specifying the order
in which players or coalitions move as well as any pre-specified set of terminal states.

2See Lucas (1992) for a survey.
3See, for instance, Chwe (1994), Bloch (1996), Ray and Vohra (1997, 1999), Xue (1998), Diamantoudi

and Xue (2003), Konishi and Ray (2003), Herings et al. (2004, 2009), Anesi (2010), Mauleon et al. (2011),
Vartiainen (2011), Anesi and Seidmann (2014), Ray and Vohra ( 2015), Chander (2015), Kimya (2015),
Dutta and Vohra (2016). Aumann and Myerson (1988) also modeled farsighted behavior, but from a
different perspective. Ray and Vohra (2014) provide an insightful survey of this literature.
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So, farsighted or forward looking behavior cannot be captured through the use of any
reasoning analogous to backwards induction.

Clearly, this approach requires the specification of the “final” outcome of any sequence
of coalitional deviations. Since pre-specified terminal outcomes do not exist in this
approach, the final outcome must be one from which no coalition wants to deviate. This
suggests that the final outcome is one which is “stable”. Then, farsightedness essentially
requires that a coalition compares the payoffs of its members at the current status quo
to what it expects will be their payoffs at the stable outcome that will be reached if
the coalition does deviate. But this implies that deciding on the stability of a particular
outcome against a sequence of moves requires us to know which other outcomes are
stable! This makes the notion of stability circular and suggests the use of a solution
concept based on the principles of internal and external stability that underlie the original
vNM stable set. Indeed, Harsanyi (1974) and much of the literature in this area after him
have modified the stable set by allowing for sequences of coalitional moves, so that both
internal and external stability are replaced by their farsighted counterparts.

Dutta and Vohra (2016) (henceforth DV) raise two issues with this approach. First, the
Harsanyi stable set and other variants do not restrict coalitions to make optimal moves.
That is, suppose x is the current status quo and coalition S is contemplating a deviation.
Then, if S has two possible deviations, with one deviation Pareto-dominating the other,
then it should not take the latter move. Moreover, all coalitions that have deviated before
S should also assume that S will only take Pareto-undominated or maximal moves.4 DV
also point out that farsighted objections as typically modelled also permit coalitions to
hold different beliefs about the continuation path of coalitional moves. That is, x may
not be in the farsighted stable set because coalition S1 replaces it with y, anticipating a
second, and final, move to z. At the same time, another coalition S2 may deviate from
x′ to y in the belief that the next (and final move) twill be to z′ (not z). That is coalitions
S1 and S2 hold different beliefs about the continuation from state y. DV refer to this
issue as one of holding consistent beliefs, although they point out that such seemingly
inconsistent beliefs may arise because coalitional moves are history-dependent.5

DV incorporated maximality and consistency (or history independence) of beliefs in the
notion of farsighted stability. They use the tool of an expectation function, a concept
borrowed from Jordan (2006). In this framework, the expectation function describes the
transition from one state to another, as well as the coalition which is supposed to effect
the move. Thus, the expectation function represented the commonly held beliefs of all
agents about the sequence of coalitional moves, if any, from every state.6 The use of a
single expectation function immediately incorporates consistency.

4Examples 1 and 2 demonstrate this issue.
5Notice that in this example, the state y is reached along different histories of past coalitional moves.
6Although there is no extensive form in our framework, the imposition of commonly held beliefs about

continuation paths is analogous to that of such beliefs in non-cooperative equilibria such as subgame
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Importantly, DV assumes that the transition from any state x to another state y only
depends on the current state. Together with a the expectation function, each state is then
identified with a stationary outcome that is eventually reached from this state. Using
this correspondence, DV define the notion of Maximality of an expectation: it is a move
that a coalition cannot improve given the consequences of the deviation. DV defined two
versions of Maximality, one demanding that the move is maximal for the active coalition
and the other that the move is maximal for any relevant coalition. The latter condition
implies strong robustness but also leads to existence problems. The sets of stationary
points of an expectation function satisfying one or the other notion of maximality as well
as farsighted versions of internal and external stability then gave two different solution
concepts. DV showed that these solution concepts are very different from the ones
defined earlier.

The point of departure in this paper is to incorporate history dependence into the DV
framework. Formally, this extension implies that a coalitional move may depend on the
past history of coalitional moves and not only on the current state. So, history depen-
dence permits coalitions to remember which coalitions or individuals have been active
and potentially condition their future behavior on the past experiences.

The dependence of coalitional moves on past history is intuitively appealing. For in-
stance, we are more likely to join groups of individuals with whom we have had a
pleasant experience in the past. Correspondingly, we are less likely to associate with
individuals who have lost our trust. Allowing agents to have memory is also standard in
non-cooperative games.

Notice that since history independence is a special case of history dependence, the
DV solutions remain solutions in our framework. However, as is standard in the non-
cooperative framework, the introduction of history dependence expands the sets of stable
outcomes quite dramatically. In particular, it allows us to prove powerful non-emptyness
results - we show that the set of stable outcomes is non-empty in all finite games as well
as in all transferable utility partition function games. What is more, the latter result is
derived under the strong Maximality property of an expectation, implying remarkable
robustness of the solution. To the best of our knowledge, this result has no analogue in
the cooperative game theory literature.

Apart from expectation functions, a key tool in the paper will be objection paths. An
objection is a finite sequence of coalitional deviations starting from an initial state and
ending up in a terminal state, with the property that each coalition in the sequence strictly
prefers the terminal state to the state from which it is deviating. In other words, it
represents a farsighted objection. We will characterise our solution concepts in terms of
collections of such objection paths- the terminal states in the appropriate collection will

perfection. For an alternative approach, see Bloch and van den Nouweland (2017) who allow individuals
to hold different beliefs about the path of future actions.
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constitute a solution in our framework. While these are not ”direct” characterisations
since the necessary and sufficient conditions are not stated in terms of sets of states,7 we
show subsequently that even the ”indirect” characterisation is remarkably useful - they
are used extensively in the proofs of the nonemptyness results as well in yielding very
transparent result on the structure of the solution(s).

The plan of the paper is the following. In the next section, we introduce some key
concepts. In section 3, we describe formally the Ray-Vohra farsighted stable set and the
largest consistent set of Chwe (1994), present examples to illustrate the importance of
maximality and consistency, and then go on to introduce our solution concepts. Section
4 contains our main characterisation results in terms of objection paths, while section 5
contains the characterisation for simple games. An important bye-product of the analysis
for simple games is that notions of maximality are rendered irrelevant, in a sense to be
explained in section 5. In section 6, we discuss the structural properties of our solution
concepts. We go on to present the nonemptyness results in section 7. Section 8 discusses
the relationship of our solution concepts to the Ray-Vohra farsighted stable set and the
largest consistent set. In particular, we show that our solutions are refinements of the
largest consistent set. This is particularly interesting in view of the usual criticism of the
largest consistent set as being too permissive.

2. THE BACKGROUND

We consider a general setting, described by an abstract game, (N,X,E, ui(.)), where
N is the set of players and X is the set of outcomes or states. LetN denote the set of all
subsets of N . An effectivity correspondence, E : X ×X → N , specifies the coalitions
that have the ability to replace a state with another state: for x, y ∈ X , E(x, y) is the
(possibly empty) set of coalitions that can replace x with y. We will sometimes use
E(x, S) to denote the set of states that coalition S can induce from x. Finally, ui(x) is
the utility of player i at state x.

The set of outcomes as well as the effectivity correspondence will depend on the specific
model that is being studied. For instance, in a partition function game, (N, v), the func-
tion v will specify a real number for each embedded coalition (S, π) where π denotes the
coalition structure with S ∈ π being one of the coalitions in the partition π. Feasibility
will imply that an embedded coalition (S, π) can distribute at most v(S, π) to individuals
in S. A state for partition function games will refer to a coalition structure π and a cor-
responding payoff allocation which is feasible and efficient for each embedded coalition
corresponding to π. Much of traditional cooperative game theory has focused on the
simpler but more restrictive transferable utility characteristic function games in which a

7We also provide an alternative characterisation in terms of sets of states for the special class of simple
games.
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coalition can assure itself of a minimum aggregate utility v(S). The dominant tradition
in the literature has treated the set of states to be the set of imputations, the Pareto effi-
cient utility profiles in v(N), implicitly assumed that S ∈ E(x, y) iff yS ∈ v(S). Ray
and Vohra (2015) provide a convincing critique of why this assumption is unsatisfactory
for studying farsightedness. We return to this issue below.

State y dominates x if there is S ∈ E(x, y) such that uS(y) � uS(x).8 In this case we
also say that (S, y) is an objection to x.

The core is the set of all states to which there is no objection.

A set K ⊆ X is a vNM stable set if it satisfies:

• (Internal stability) For any x ∈ K, there is no y ∈ K such that y dominates x,
• (External stability) For any x /∈ K, there is y ∈ K such that y dominates x.

The core and vNM stable set are myopic solution concepts since they are based on
single rounds of deviations. In order to introduce farsighted solutions, it is convenient
to introduce the concept of objection paths.

DEFINITION 1. An objection path is a finite sequence (y0, S1, y1, . . . , Sm, ym), such that,
for all k = 1, . . .m, Sk ∈ E(yk−1, yk) and uSk

(ym)� uSk
(yk−1).

Given the abstract game (N,X,E, ui(.)), we denote the set of all objection paths by P ∗.
We will often use P ⊆ P ∗ to denote a subset of objection paths, and Px to denote the
set of objection paths in P with initial element x. We will use px to denote a typical
objection path in Px, and µ(p) to denote the terminal state in the objection path p.

State y farsightedly dominates x if there is an objection path px such that y = µ(px).

Farsighted or indirect domination takes into account forward looking behaviour because
at each point in the objection path, the deviating coalition takes into account the utility
profile not at the next state in the sequence but at the “final ” state in the objection path.
Of course, this leaves open the question of how the terminal state is determined. This is
going to be a central issue of the paper.

The relation of dominance or farsighted dominance depends on the specification of the
effectivity function. Ray and Vohra (2015) point out the importance of imposing appro-
priate restrictions on the effectivity function in the construction of farsighted solution
concepts. In the context of characteristic games, the standard practice allowed a coali-
tion S complete freedom to choose even the payoffs to individuals in the complementary
coalition N − S. Notice that this does not matter for solution concepts like the core or
the vNM stable set since these are based on myopic deviations - the deviating coalition
simply compares its own payoff allocations at the current state and the state following

8We write uS(y)� uS(x) if ui(y) > ui(x), for all i ∈ S.
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immediately after the deviation.9 But why or how can coalition S dictate either the
payoffs accruing to the complementary coalition or how N − S organises itself after S
deviates? Of course, this does matter even in characteristic function games since it may
influence what coalitions form along the sequence. Ray and Vohra (2015) demonstrate
that this assumption can significantly alter the nature of the farsighted version of the
vNM stable set. They show that imposing reasonable restrictions on the effectivity cor-
respondence results in a farsighted stable set that is very different from that of Harsanyi
(1974).

We will impose the appropriate restrictions on the effectivity function when we apply
our solution concept to partition function games and simple games later on.

3. RATIONAL EXPECTATIONS AND FARSIGHTED SOLUTION CONCEPTS

Virtually all farsighted solution concepts are either implicitly or explicitly based on no-
tions of sequences of objections or paths as we have defined here. Suppose that the
“current” state is x and coalition S is contemplating whether to deviate from x to y. In
a farsighted solution concept, it has to look ahead to the terminal state of the sequence
of deviations that will take place after y. Obviously, there can be many objection paths
from y, and typically S itself has no control over which one will actually take place. The
multiplicity of such paths has resulted in a multiplicity of different solution concepts. We
illustrate this point by describing two such solution concepts below.

DEFINITION 2. A set F ⊆ X is a farsighted stable set if:

• (Farsighted internal stability) For any x ∈ F , there is no y ∈ F such that y
farsightedly dominates x,
• (Farsighted external stability) For any x /∈ F , there is y ∈ F such that y far-

sightedly dominates x.

The farsighted stable set is based on an optimistic view of the coalitions involved in a
farsighted objection - a state is dominated if there exists some path that leads to a better
outcome. Chwe (1994) proposed a farsighted solution concept based on conservative or
pessimistic behavior; this is good at identifying states that cannot possibly be considered
stable.

DEFINITION 3. A set K ⊆ X is consistent if

K =

{
x ∈ X :

for all y and S with S ∈ E(x, y), there is z ∈ K such that z = y,
or z farsightedly dominates y and uS(z) 6� uS(x)

}
.

9Note that this aspect of the effectivity function is important even for myopic solution concepts of
partition function games since the deviating coalition has to “predict what coalition structure will prevail
immediately after the deviation since its aggregate utility depends on what partition forms.
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Thus, any potential move from a point in a consistent set is deterred by some farsighted
objection that ends in the set. Chwe shows that there exists one such set which contains
all other consistent sets, and defines this to be the largest consistent set (LCS). The
largest consistent set has also received a lot of attention in the literature.

DV point out that such implicit assumptions of optimistic or pessimistic expectations
are unsatisfactory because they are ad hoc. Instead, coalitions should assume that all
subsequent coalitions will behave in an optimal manner. The following examples from
DV illustrate the importance of this point.

EXAMPLE 1. In Figure 1, Player 1 is effective in moving from state a to b, while player
2 can replace state b with either of the “terminal” states c or d. The numbers below
each state denote the utilities to the players.

a
(1, 1)

b
(0, 0)

c
(10, 10)

{1} {2}

d
(0, 20)

{2}

FIGURE 1

Both c and d belong to the farsighted stable set since they are terminal states. Since
there is a farsighted objection from a to c, the former is not in the farsighted stable set.
However, this is based on the expectation that player 2 will choose to replace b with c
rather than d even though 2 prefers d to c. If 2 is expected to move, rationally, to d, then
a should be judged to be stable, contrary to the prediction of the farsighted stable set.
Note that a belongs to the LCS because of the possibility that the final outcome is d. So
in this example the LCS makes a more reasonable prediction than the farsighted stable
set.

EXAMPLE 2. Figure 2 shows a modification of Example 1 as shown in Figure 2.

Now the optimal move for player 2 is to choose c rather than d. The LCS and farsighted
stable set remain unchanged. But now it is the LCS which provides the wrong answer
because player 1 should not fear that player 2 will (irrationally) choose d instead of c.
In this example, the farsighted stable set makes a more reasonable prediction.
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a
(1, 1)

b
(0, 0)

c
(10, 20)

{1} {2}

d
(0, 10)

{2}

FIGURE 2

These examples show that both the LCS and the farsighted stable set suffer from the
problem that they do not require coalitions (in these examples,{2}) to make moves that
are optimal among all profitable moves.

As we have mentioned earlier, DV address this issue by using an expectations function to
model the transition from one state to another, as well as the coalition which is supposed
to effect the move. The use of an expectation function to represent the transition from
one state to another is adapted from Jordan (2006) who used such a function to represent
commonly held beliefs about the transition from any state to the final outcome. The ex-
pectation function represents the commonly held beliefs of all agents about the sequence
of coalitional moves, if any, from every state. One can then choose to impose restric-
tions on the expectation function in order to make the function reasonable. An obvious
restriction is that the expectation function must be consistent with the underlying game
and hence with the effectivity function associated with the game - it cannot specify a
move from state x to state y by coalition S if S /∈ E(x, y). Another restriction which is
desirable can be that the expectation function specify moves that are optimal. We will
describe below slightly different notions or degrees of optimality - each will give rise to
a specific restriction on the expectation function.

DV assumed that the process of transition is myopic or history independent ; that is, if
the expectation function specifies a transition from state x to state y, then it must do
so irrespective of how state x is reached.10 The essential purpose of this paper is to
show how the DV analysis can be extended to incorporate history dependence into this
transition process. Allowing for history dependence obviously results in a more general
framework in which future coalitional moves can in principle depend on the evolution
of past coalitional moves. There at least two reasons why this is an interesting exercise.
We have mentioned earlier that there are a variety of contexts where history does matter.
Moreover, from a purely formal perspective, it is well known that history dependence

10Note that, in our framework, we cannot interpret states as nodes of an extensive form game since a
state can be reached along several different objection paths.
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enlarges the set of noncooperative equilibria. In principle, this logic may carry forward
to the present context. Indeed, we show in the next section that this is indeed true.
We show that even in the case of a Condorcet cycle over three states when virtually all
solution concepts fail to provide a nonempty solution, our history dependent solution
will pass the non-emptyness test.

With this in mind, we define histories more formally. Let x0 be an initial status quo.
At period t = 0, 1, ..., coalition S can challenge the current state xt by demanding an
outcome xt+1 such that S ∈ E(xt, xt+1). We allow only one coalition to be active at
any time, without describing any explicit protocol which chooses the active coalition. In
such a case, xt+1 becomes the new status quo at period t+ 1. If no coalition challenges
some state x in period t, then the game terminates and x is implemented. A history
is a sequence (x0, S1, x1, ..., Sm, xm) that specifies the past play path and coalitions that
have been active till xm has been reached. LetH represent the set of all (finite) histories.
Note that for any h ∈ H , (h, S, x) is also a history where the state x is induced by S
after history h has been reached.

Expectation Function

An expectation is a function F : H → X × N , specifying the active coalition and its
move for all possible current states and past histories. Denote F (h) = (S(h), f(h)),
where f(h) is the state that is expected to follow at history h, and S(h) is the coalition
expected to induce the next state. If S(h) = ∅, then no coalition wants to change the
state and the final state of the history h will be implemented. 11

As usual, history independence is a special case of history dependence. Consider any
two histories h, h′ ∈ H , and any state x ∈ X . Then, the DV expectation function
satisfied F (h, x) = F (h′, x) In other words, the continuation path only depends on the
state x and not on whether the state was reached via history h or history h′.

Given an expectation F = (S, f), let F k denote the k-fold composition of F such that
F 0(h) = F (h) and F k+1(h) = F (h, F k(h))) for all k = 0, 1, 2, ... . Similarly, denote
by Sk(h) and fk(h) the first and second components of F k(h), respectively, so that
F k(h) = (Sk(h), fk(h)), for any k.

We say that history h is stationary if S(h) = ∅.

An expectation F is absorbing if, for every h ∈ H, there exists k such that Sk(h) = ∅.

For any history h = (x0, S1, x1, ..., Sk, xk), we will use µ(h) to denote the terminal state
of h. In this example, µ(h) = xk. Notice that all finite histories have well-defined
terminal states. Of course, a stationary state is terminal, but not all terminal states are
stationary.

11For history dependent solutions in related contexts, see Vartiainen (2011, 2014, and 2015).
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A history (h, S1, y1, ..., Sm, ym) is a farsighted objection to h if

(µ(h), S1, y1, . . . , Sm, ym) ∈ Pµ(h).

That is, the new history is formed from h by appending an objection path to it.

For an absorbing F , the path F (h) generated by F from history h, i.e.,

F (h) = (F (h), F 1(h), F 2(h), ...)

has a finite length, and µ(F (h)) is well defined for any h.

Let F (H) = ∪h∈H{F (h)} denote the sets of possible paths that is generated by an
absorbing F , by varying the initial history, and µ(F (H)) the stationary states associated
with these paths. Hence, assuming that expectation F is played in the continuation
game, µ(F (H)) is the set of states that can be eventually reached by starting from any
initial history. So, it makes sense to view µ(F (H)) as a farsighted solution when F is
the function describing the transition from state to state.

We now turn to the issue of describing “reasonable” restrictions on F keeping in mind
that these translate into restrictions on µ(F (H)), the set of stationary points.

We first describe two restrictions on the expectation F that are the farsighted analogues
of internal and external stability.

: (I) If h is a stationary history, then there does not exist y ∈ X and S ∈ E(µ(h), y)
such that uS(µ(F (h, S, y)))� uS(µ(h)).

: (E) If h is a nonstationary history, then (h, F (h)) is a farsighted objection to h.

If Condition I is not satisfied, then for some stationary state x, there is a coalition S
which can deviate anticipating that the resulting sequence of transitions according to
F will lead to another stationary state that all members of S prefer. Clearly, this is a
violation of internal stability. Condition E states that if µ(h) is not a stationary state, then
some farsighted objection will result in a stationary state - this is an obvious requirement
of farsighted External Stability.

Notice that nothing has been said so far about the optimality of coalitional deviations
involved in any farsighted objection implicit in Condition E. We now describe two dif-
ferent versions of optimality or maximality.

: (M) If h is a nonstationary history, then there does not exist y ∈ X such that
S(h) ∈ E(µ(h), y) and uS(h)(µ(F (h, S, y)))� uS(h)(µ(F (h))).

: (M*) If h is a nonstationary history, then there does not exist y ∈ X and S ∈
E(µ(h), y) such that S(h) ∩ S 6= ∅ and uS(µ(F (h, S, y)))� uS(µ(F (h))).
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Maximality assumes that at a nonstationary history x, some coalition S(h) is the coali-
tion that has the floor. Then, S(h) should not be able to deviate to another path that all
i ∈ S(x) prefer. Condition M* (Strong Maximality) is stronger. This allows for the
possibility that more than one coalition may be able to move at state x. For instance,
there may be some coalition S such that i ∈ S ∩ S(h) , y ∈ X with S ∈ E(µ(h), y and
ui(µi(F (h, S, y))) > ui(µ(F (h))). Then, a “rational” i should join coalition S instead
of S(h). Condition M* precludes this possibility.

We will say that history dependent and absorbing expectation F is (strongly) rational,
abbreviated HRE (resp. HSRE), if it satisfies Properties I, E, and M (resp. M*).

Our farsighted solution concepts are defined below.

DEFINITION 4. The set of stationary points, µ(F (H)) of an HRE (HSRE) F is his-
tory dependent (strongly) rational expectation farsighted stable set, abbreviated HREFS
(HSREFS).

Of course, every HSRE is a HRE, and hence a HSREFS is a HREFS. But the converse
is not true.

REMARK 1. DV defined Conditions I, E, M and M* for expectation functions which are
history independent. They called their solution concepts REFS and SREFS. Of course,
any set which is REFS is also HREFS and similarly any SREFS is HSREFS.

4. CHARACTERIZATION

In this section, we provide characterization results for HREFS and HSREFS of abstract
games. Our characterization exercises are not directly in terms of sets of states, but in
terms of the terminal states of sets of objection paths. That is, we provide necessary and
sufficient conditions so that the terminal states corresponding to any set P of objection
paths will be HREFS (or HSREFS) iff P satisfies these conditions.

While we are aware that it may be difficult to check whether a specific subset of states
satisfies the necessary and sufficient condition, it is very handy in proving general non-
emptiness results - we provide constructive proofs of nonempty HREFS in all finite
abstract games as well as a nonempty HSREFS in all superadditive partition function
games. The characterization results also throws light on the logical structure of sets of
HREFS, including the fact that a largest HREFS exists. Finally, the characterization is
employed when we analyze the relationship of HREFS and HSREFS to other solution
concepts.

DEFINITION 5. Let P be a collection of objection paths.
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• An objection path p = (x0, S1, x1, ...) is S1−dominated in P via y if S1 ∈
E(x0, y) and uS1(µ(py))� uS1(µ(px0)), for all py ∈ P .
• An objection path (x) is S-dominated in P via y if S ∈ E(x, y) and uS(µ(py))�
uS(x) for all py ∈ P .

That is, an objection path p is dominated via node y in the set P of paths if the members
of the first active coalition profit by directing the play to node y rather than continuing
along the path p to the terminal state. Notice that the definition requires that once S1

deviates to y, it takes into account the possibility that any objection path in P with y as
the original state may be followed in future. Clearly, if this condition is satisfied, and S1

believes that only the set of paths P are “possible” paths that can be followed, then it
cannot be optimal for S1 to deviate to x1. Part (ii) stipulates that if x is not followed by
any other state, then any coalition can dominate it via some y if an analogous condition
is satisfied.

DEFINITION 6. A collection of objection paths P is coherent if:

(1) The set Px is nonempty, for all x ∈ X ,
(2) If (x0, S1, ...) ∈ P, then (xk, Sk+1, ...) ∈ P , for all k = 0, 1, ...,
(3) If (x0, S1, ...) ∈ P, then (x0, S1, ...) is not S1−dominated in P (via any y),
(4) If (x) ∈ P, then (x) is not S−dominated in P (via any y), by any S.

REMARK 2. Suppose µ(p) = x for some p ∈ P , where P is a coherent collection of
paths. Then, by part (2) of Definition 6, (x) ∈ P .

Our first theorem shows that any HREFS must be the set of terminal states of a coherent
collection of objection paths.

THEOREM 1. A set Y ⊆ X is HREFS if and only if Y ≡ µ(P ) for some coherent
collection of objection paths P .

The proof of the theorem will follow from two lemmas.

LEMMA 1. Let F be a history dependent, absorbing expectation function satisfying
conditions I, E and M. Then, F (H) is a coherent collection of objection paths.

Proof. Since F is absorbing, F consists of finitely long paths. Moreover, for any non-
stationary configuration (h), F (h) is an objection path by Property E.

We now check the defining conditions of a coherent collection of paths. Take any history
h such that µ(h) = x.

First, if S(h) = ∅, then F (h) = (x). If S(h) 6= ∅, then, by Property E, there is S ∈
E(x, y) such that uS(µ(F (h, S, y))) � uS(x). By construction, F (h, S, y) ∈ F (H).
Thus, in all cases, F (h) ∈ F (H)x for all x ∈ X .
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Second, since F (h) = (F (h), F (h, F (h))), and (F (h), F (h, F (h)) ∈ F (H) it follows
by induction that if (x0, S1, x1, ...) ∈ F (H), then (xk, Sk+1, ...) ∈ F (H) for all k =
0, 1, ....

Next, suppose thatF (h) is S(h)-dominated inF (H) via y. Then uS(h)(µ(F (h, S(h), y)))�
uS(h)(µ(F (h))). But this violates Property M.

Finally, suppose that F (h) is S-dominated in F (H) via y. Then uS(µ(F (h, S, y))) �
uS(µ(h)) for some S such that S ∈ E(µ(h), y). But this violates Property I.

This shows that F (H) satisfies all the four requirements defining a coherent set of ob-
jection paths.

We now want to prove the converse result; if P is a coherent collection of objection
paths, then the terminal sates associated with P is HREFS. The proof of the claim is
constructive - given any coherent set P , we specify an absorbing expectations function
satisfying Properties I, E and M. We now illustrate the construction in the canonical
”difficult” case - the Condorcet cycle involving three states and three individuals.

An Example

Let N = {1, 2, 3}, and X = {1, 2, 3}. The utility profile is

• u1(x) > u1(y) > u1(z).
• u2(y) > u2(z) > u2(x)
• u3(z) > u3(x) > u3(y)

Any two individuals constitutes a majority. The effectivity function E specifies that for
all w,w′ ∈ X , S ∈ E(w,w′) iff |S| ≥ 2. The domination relation is cyclic, and virtually
all solutions (REFS, farsighted stable set, vNM set, etc) are empty. However, we show
below that X itself is HREFS.

Identify a coherent set of objections paths

(1) P = {(x), (y), (z), (x, {2, 3}, z), (y, {1, 3}, x), (z, {1, 2}, y)}.

It is trivial to check that Conditions 1-3 of Coherence are satisfied. To check 4, it suffices
(given the symmetry in the example) to check that x is not S-dominated in P for any S
via any w ∈ X . The only possible S is {2, 3} and w = z. But, then if S moves to z,
there is pz = (z, {1, 2}, y) ∈ P and u3(x) > u3(y).



15

Partition the set of histories H into six phases Hp∈P recursively. Each phase contains
all the information required for construction of F . That is, if h, h′ ∈ Hp for any p ∈ P ,
then the constructed F will have the property that F k(h) = F k(h′) for all k = 1, . . . .

The initial step in the recursion is: choose w ∈ X and let w ∈ H(w). The inductive step
is: for any h ∈ H ,

(1) if h ∈ H(x), then (h, {2, 3}, z) ∈ H(z,{1,2},y) and (h, S, w) ∈ H(w) for all
(S,w) 6= ({2, 3}, z),

(2) if h ∈ H(y), then (h, {1, 3}, x) ∈ H(x,{2,3},z), and (h, S, w) ∈ H(w) for all
(S,w) 6= ({1, 3}, z),

(3) if h ∈ H(z), then (h, {1, 2}, y) ∈ H(y,{1,3},x), and (h, S, w) ∈ H(w) for all
(S,w) 6= ({1, 2}, x),

(4) if h ∈ H(x,{2,3},z), then (h, {2, 3}, x) ∈ H(x), (h, {2, 3}, y) ∈ H(y), (h, {2, 3}, z) ∈
H(z),

(5) if h ∈ H(y,{1,3},x), then (h, {1, 3}, x) ∈ H(x), (h, {1, 3}, y) ∈ H(y), (h, {1, 3}, z) ∈
H(z),

(6) if h ∈ H(z,{1,2},y), then (h, {1, 2}, x) ∈ H(x), (h, {1, 2}, y) ∈ H(y), (h, {1, 2}, z) ∈
H(z).

Notice that h ∈ H(x) ∪H(x,{2,3},z) implies µ(h) = x, and so on.

Construct an expectation F P such that, for any h ∈ H ,

(1) if h ∈ H(w), then F P (h) = (∅, w), for all w ∈ X ,
(2) if h ∈ H(x,{2,3},z), then F P (h) = ({2, 3}, z),
(3) if h ∈ H(y,{1,3},x), then F P (h) = ({1, 3}, x),
(4) if h ∈ H(z,{1,2},y), then F P (h) = ({1, 2}, y).

The intuitive reason why this construction works is the following. Histories in each Hw

are designed to be stationary. Consider any deviation from say h ∈ Hx. The deviation by
{2, 3} to z leads to the non-stationary history (h, {2, 3}, z) ∈ Hz,{1,2},y. But, (x) is not
{2, 3}-dominated in P . And this allows {2, 3} to be “punished” since F P (h, {2, 3}, z) =
({1, 2}, y) resulting in the terminal state y.

We now proceed to a more formal description of why the construction provides an
HREFS.

First, that F is absorbing follows from the steps below.

• if h ∈ H(w), then F P (h) = (∅, w), for all w ∈ X .
• if h ∈ H(x,{2,3},z), then F P (h, F P (h)) = F 2(h) = (∅, z),
• if h ∈ H(y,{1,3},x), then F P (h, F P (h)) = F 2(h) = (∅, x),
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• if h ∈ H(z,{1,2},y), then F P (h, F P (h)) = F 2(h) = (∅, y).

To check Property I, suppose that h is a terminal history with h ∈ H(x). By construction,
(h, {2, 3}, z) ∈ H(z,{1,2},y) and (h, S, w) ∈ H(w) for all (S,w) 6= ({2, 3}, z). Thus
F P (h, {2, 3}, z) = ({1, 2}, y) and F P (h, S, w) = (∅, w). Hence, µ[F

P
(h, {2, 3}, z)) =

y and µ[F
P

(h, S, w)) = w for all (S,w) 6= ({2, 3}, z). Thus a deviation by {2,3} to z
is not profitable for agent 3. No other deviation is profitable for the deviating coalition
either.

To check Property E, suppose that h is a nonterminal history, with h ∈ H(x,{2,3},z). By
construction, F

P
(h) = (h, {2, 3}, z). Since µ[h) = x, this is a farsighted objection to h.

Finally, consider Property M. Suppose that h is a nonterminal history. Then, say, h ∈
H(x,{2,3},z). By construction, (h, {2, 3}, w) ∈ H(w), for allw ∈ X . ThusF P (h, {2, 3}, w) =

(∅, w), and F ((h, {2, 3}, w) = w for all w ∈ X . No deviation is profitable for {2, 3}
relative to the proposed choice z.

The HREFS associated to F P is {x, y, z}.

Now we turn back to the general case. The next lemma builds on the logic of the previous
example.

LEMMA 2. If P is any coherent collection of objection paths, then µ(P ) is HREFS.

Proof. Fix a coherent collection of objection paths P for the rest of the proof.

Take any path px = (x, S1, . . .) ∈ P and pair (S, y) such that S ∈ E(x, y) with
S = S1 if px 6= (x). Define a function ξ with the property that ξ(px, (S, y)) ∈ P
and uS(µ(ξ(px, (S, y)))) 6� uS(µ(px)) Such a function ξ must exist for each such
(px, (S, y)) from Conditions 3 and 4 of Definition 6.

Given a coherent collection of objection paths P , we now construct a history dependent
and absorbing expectation function F P such that µ(F (H)) = µ(P ).

Interpret P as an index set and let {Hp}p∈P be a partition of the set of histories H . We
construct F P that is measurable with respect to this partition so that for each p ∈ P , and
histories h, h′ ∈ Hp, F (h) = F (h′). So, each element Hp of the partition of H contains
all the relevant information concerning the past coalition actions.

We specify the partition of H recursively. For each x ∈ µ(P ), from Remark 2, we
know that (x) ∈ P . For each such x, let (x) ∈ H(x). Recursively, take any px0 =
(x0, S1, x1, . . .) ∈ P and h ∈ Hpx0

. Let S ∈ E(x0, y) be such that S = S1 if S1 6= ∅,
and let
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(2) (h, S, y) ∈
{
H(x1,S2,...), if (S, y) = (S1, x1),
Hξ(px0 ,(S,y))

, if (S, y) 6= (S1, x1).

Proceeding from the initial history ∅, each element in the set of histories H is allocated
into exactly one element of {H(x0,S1,...)}(x0,S1,...)∈P . Note that if h ∈ H(x0,S1,...), then
µ(h) = x0.

Construct now an expectation F P such that, for any h ∈ H(x0,S1,...),

(3) F P (h) =

{
(S1, x1), if S1 6= ∅,
(∅, x0), if S1 = ∅.

First, we check that F P is absorbing.

Take any (x0, S1, ...) ∈ P and any h ∈ H(x0,S1,...). Then F P (h) = F 1(h) = (S1, x1),
F P (h, F P (h)) = F 2(h) = (S2, x2), and so on. Thus F P continues along the path
(x0, S1, x1, S2, ...) ∈ P until a stationary state is reached. Since any objection path is
finitely long, F is absorbing.

We now verify the three properties of a rational expectation.

Property I: Suppose that h is a terminal history. Then h ∈ H(µ(h)). Consider y such
that S ∈ E(µ(h), y). Then, (h, S, y) ∈ Hξ((µ(h),(S,y)). By the construction of F P ,
(y, F 1(h, S, y), F 2(h, S, y), ...) = ξ((µ(h)), (S, y)). By the definition of ξ, uS(µ(ξ(µ(h), y))) 6�
uS(µ(h)).

Property E: Suppose that h is a nonterminal history. Find the path (x0, S1, ...) ∈ P be
such that h ∈ H(x0,S1,...). By the construction ofF P , (F 1(h), F 2(h), ...) = (S1, x1, S2, ...).
Since (x0, S1, x1, S2, ...) is a finitely long objection path, the contination play leads a ter-
minal history (h, F 1(h), F 2(h), ...) = (h, x0, S1, ...), which is a farsighted objection to
h.

Property M: Suppose that h is a nonterminal history. Find the path (x0, S1, ...) ∈ P be
such that h ∈ H(x0,S1,...). Then x0 = µ(h). Take any y such that S1 ∈ E(x0, y). By
the construction of F P , (y, F 1(h, S, y), F 2(h, S, y), ...) = ξ((x0, S1, ...), (S, y)). By the
definition of ξ, uS1(µ(ξ((x0, S1, ...), (S, y)))) 6� uS1(µ((x0, S1, ...))).

This completes the proof of the lemma.

Lemmas 1 and 2 prove Theorem 1.

Of course, neither the theorem nor the lemmas throw any light on the existence of a co-
herent collection of paths, nor how such a set can be identified if it exists. The following
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example demonstrates that the rudimentary structure of the abstract game does not itself
guarantee the existence of a coherent collection of paths, and hence a HREFS.

Consider a one agent N = {1} decision problem with X = (−1, 0), and where {1} ∈
E(x, y) if and only if y = x/2. Let u1(x) = x for all x ∈ X . Now any (trivial) objection
path (x) except (0) is dominated via x/2. Hence the only candidate for the HREFS is
{0}. But there is no finite objection path that initiates from any x and ends in 0. Hence
Condition 6.1 is violated by any collection of paths, and there cannot be any HREFS.

Our objective is to prove the existence of HREFS in a large and natural class of games.
We will, in fact, provide a sufficient condition for a stronger version of the solution,
HSREFS. To this end, we will define a stronger version of Coherence.

DEFINITION 7. A collection of objection paths P is strongly coherent if,

(1) Px is nonempty, for all x ∈ X,
(2) If (x0, S1, ...) ∈ P, then (xk, Sk+1, ...) ∈ P for all k = 0, 1, ...,
(3) If (x0, S1, ...) ∈ P, then (x0, S1, ...) is not S−dominated in P (via any y), for

any S such that S1 ∩ S 6= ∅,
(4) If (x) ∈ P , then (x) is not S−dominated in P (via any y), for any S.

So, strong coherence strengthens Condition 6.3, all other requirements being the same
as for coherence.

THEOREM 2. If P is a strongly coherent collection of objection paths, then µ(P ) is
HSREFS.

Proof. Let P be some strongly coherent collection of objection paths. We construct an
HSRE F P such that F (H) = P .

Identify a function ξ that is defined for each pair ((x0, S1, ...), (S, y)) such that (x0, S1, ...) ∈
P and S ∈ E(x0, y) with S1 ∩ S 6= ∅ if S1 6= ∅. Then ξ is defined by the property that
ξ((x0, S1, ...), (S, y)) ∈ Py and

uS(µ(ξ((x0, S1, ...), (S, y)))) 6� uS(µ((x0, S1, ...))),

for any pair ((x0, S1, ...)(S, y))).

Since P satisfies Definition 7, such a function ξ does exist.

As before, interpret a Strong coherent path structure P as an index set and let {Hp}p∈P
be a partition of the set of histories H . We construct F that is measurable with respect
to this partition.
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We specify the partition of H recursively. As before, let (x, ∅) ∈ Hx for all x ∈ µ(P ).
For any history h, find (x0, S1, ...) ∈ P such that h ∈ H(x0,S1,...) . For any S and y such
that S ∈ E(x0, y) and such that S1 ∩ S 6= ∅ if S1 6= ∅, let

(4) (h, S, y) ∈
{
H(x1,S2,...), if (S, y) = (S1, x1),
Hξ((x0,S1,...),(S,y)), if (S, y) 6= (S1, x1).

Then, each element in the set of histories H is allocated into exactly one component of
the partition {Hp}p∈P . Note that, by construction, µ(h) = x0 for all h ∈ H(x0,S1,...).

Construct now an expectation F such that, for any h ∈ H(x0,S1,...),

(5) F P (h) =

{
(S1, x1), if S1 6= ∅,
(∅, x0), if S1 = ∅.

It suffices to verify Property M* since the rest of the proof is identical to that of Lemma
2. Suppose that h is a nonstationary history. Find the path (x0, S1, ...) ∈ P be such
that h ∈ H(x0,S1,...). Then x0 = µ(h). Take any S and y such that S ∈ E(x0, y) and
such that S1 ∩ S 6= ∅. By the construction of F P , (y, F 1(h, S, y), F 2(h, S, y), ...) =
ξ((x0, S1, ...), (S, y)). By the definition of ξ, uS(µ(ξ((x0, S1, ...), (S, y)))) 6� uS(µ((x0, S1, ...))).

We will use these characterisation theorems repeatedly in subsequent sections. In partic-
ular, we will use Theorem2 to construct nonempty HSREFS in all superadditive trans-
ferable utility partition games, as well as non-empty HREFS in all finite games.

5. SIMPLE GAMES

In this section, the focus is on the class of NTU simple games, which we formalise
by a non-empty set W of winning coalitions and the set of states X . von Neumann
and Morgenstern (1944) described simple games by a characteristic function v such that
v(S) = 1 if S ∈ W and v(S) = 0 otherwise.12 Of course, this assumes that utility is
transferable and winning brings the same aggregate benefit to the winning coalition. We
describe a wider class of games where, in particular, utility is not transferable. Consider
for instance a legislature which has to choose whether to pass a bill along with a set of
possible amendments. This is clearly one example of a context which is more suitably
modelled as a non-transferable utility game.

12Farsightedness for this class of simple games was studied by both Ray and Vohra(2015) as well as
DV(2016).
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Our focus is on monotonic and proper simple games, such that:

(i) If S ∈ W , and S ⊂ T , then T ∈ W .13

(ii) If S ∈ W , then N − S /∈ W for all S ⊆ N .

GivenW , a coalition B is a blocking coalition if N −B is not a winning coalition. Let
B denote the set of blocking coalitions.

In a simple game, only winning and blocking coalitions have any power to change out-
comes. This is captured by an appropriate description of the effectivity function.

Assumption 1. For each S ∈ W , there is a nonempty set XS ⊂ X such that for all
T ∈ W , S ⊂ T implies that, for all i ∈ S and x ∈ XT , there exists y ∈ XS s.t.
ui(y) ≥ ui(x).

Notice that this restriction on the sets {XS}S∈W is trivially satisfied in the case of trans-
ferable utility simple games since v(S) = v(T ) = 1 when the two are winning coali-
tions. It also makes eminent sense since winning coalitions have complete power to
change outcomes. Furthermore,

X =
⋃
S∈W

XS ∪X0

where X0 is the set of states where no winning coalition has formed. With some abuse
of notation, we will group together all states in X0 and label the group a “zero state”,
to be denoted x0. We will normalise utility functions so that ui(x0) = 0 for all i ∈ N .
Moreover, we assume

Assumption 2. For each S ∈ W , there is x ∈ XS such that ui(x) > 0 for all i ∈ S.

We can now describe effectivity function.

Assumption 3. The effectivity function E satisfies the following

(1) For all S ∈ W , for all x ∈ X , S ∈ E(x, y) iff y ∈ XS .
(2) For all B ∈ B, B ∈ E(x, x0) for all x ∈ X .
(3) For all S, T ∈ W if S ⊂ T , then for all x ∈ XT , (T − S) ∈ E(x, y) only if

ui(y) ≥ ui(x) for all i ∈ S.
(4) For all S ∈ W , for all R ⊂ N − S, for all x ∈ XS , T /∈ E(x, y) if x 6= y.

The first condition states that a winning coalition S has the power to change any “initial”
state to any state inXS , while the second part states that a blocking coalition can change
any state to a zero state. The third condition states that if some members of a winning
coalition deviate but the remaining members remain a (new) winning coalition, then no

13So, N ∈ W .
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member of the new winning coalition is worse-off. Finally, the fourth condition states
that if a winning coalition has formed, then no subset of the complementary coalition has
any power to change the outcome. Since a state also describes a partition of N , it may
seem as if winning or blocking coalitions are also deciding on the partition of N − S.
This would of course run foul of the Ray-Vohra critique on the appropriate specification
of effectivity functions. However, the structure of simple games a implies that the only
relevant characteristic of a partition is whether it contains a winning coalition, and so
the specification above is consistent with the spirit of the Ray-Vohra critique.

In this setting, we derive a transparent necessary and sufficient condition for HSREFS
and HREFS in terms of sets of outcomes rather than sets of objection paths. As we
have mentioned earlier, the advantage of this more direct approach is that it is easier
to check whether a given set of social states Y can be supported as a solution. The
intuitive reason why it is possible to derive this direct characterisation is because of the
special structure of simple games - the only coalitions with some power are winning
coalitions, or blocking coalitions that have the power to prevent the complementary
coalition from winning. Importantly, we are also able to show that this stark distribution
of power implies that any absorbing expectation function satisfying Conditions I and E
is an HSRE. That is, neither version of maximality plays a role for NTU simple games
in the presence of history dependence.

For any x ∈ X and S ∈ N , denote DS(x) = {y ∈ X : uS(y) � uS(x)}. Our
characterization is in terms of the system of sets {DS(x)}S∈N ,x∈X .

DEFINITION 8. A set Y ⊆ X satisfies Condition C if for any y ∈ Y , for any S ∈ N ,
z ∈ XS such that z ∈ (Y ∩DS(y))∪ (XS−Y ), there are B ∈ B, W ∈ W and x ∈ XW

such that x ∈ Y ∩DB(z) ∩ (DW (x0)−DS(y)).

REMARK 3. Note that this definition allows for the possibility that B = W . This will be
the case if there is T ∈ W and x ∈ Y ∩XT ∩DT (z)−DS(y).

The following Fact will be used in what follows.

Fact 1: For all x ∈ X , if there is an objection path px 6= (x), with µ(px) = y, then either
there is a winning coalition S such that p′x = (x, S, y) or there is a pair (B, S) ∈ B×W
such that p′′x = (x,B, x0, S, y).14

Our main result of this section follows.

14Since y is the terminal state of an objection path, some winning coalition must have formed and
ui(y) > 0 for every member of the winning coalition. Let S be this coalition. Suppose yK is the
penultimate state in the objection path px. If a winning coalition has formed in yK , then yK = x and then
S can move directly from x to y. Otherwise, yK is a zero state and then S can move from x to y with the
help of some blocking coalition.
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THEOREM 3. In all proper simple games, the following statements are equivalent for
any set Y ⊂ X .

(1) Y = µ(F̄ ) where F is an absorbing expectation function satisfying Conditions I
and E.

(2) Y is HSREFS.
(3) Y satisfies Condition C.

Proof. Since (2) obviously implies (1), it is sufficient to show that (3) implies (2) and
(1) implies (3).

Step 1: We first show that (3) implies (2).

Suppose Y satisfies Condition C. Define a function φ such that, for any y ∈ Y , for any
z ∈ (X − Y ) ∪ (Y ∩DS(y)) and S ∈ E(y, z),

φ(y, S, z) = (B, x0,W, x) s.t. B ∈ B,W ∈ W and x ∈ Y ∩XW ∩DB(z) ∩ (DW (x0)−DS(y)).

Since Y satisfies Condition C, such a function φ exists. By construction, (z, φ(y, S, z)) =
(z,B, x0,W, x) is an objection path, for any such specified (y, S, z).

We show that there is a strongly coherent collection of objection paths P with µ(P ) =
Y .

Let P̄ = {(z, φ(y, S, z)) : y ∈ Y, S ∈ N , z ∈ XS, z ∈ (X − Y ) ∪ (Y ∩DS(y))}, and
construct P by

P = {(y)}y∈Y ∪ P̄ .

We show that P satisfies parts 1-4 of Definition 7.

To check part 1 of the definition, note that (y) ∈ P for each y ∈ Y . Take any x /∈ Y . If
x ∈ X0, then B ∈ E(y, x) for all y ∈ Y,B ∈ B. So, choose some y ∈ Y,B ∈ B, and
note that px = (x, φ(y,B, x)) ∈ P . If x /∈ X0, then x ∈ XS for some S ∈ W . Then,
again px = (x, φ(y, S, x)) ∈ P .

Part 2 follows immediately.

To check part 4, consider any path (y) ∈ P . Take any S ∈ N , and z ∈ XS . If
z /∈ (Y −DS(y)), then pz = (z, φ(y, S, z)) ∈ P and µ(pz) ∈ Y −DS(y). So, (y) is not
S-dominated in P via z. If z ∈ (Y − DS(y)), then again (y) is not S-dominated in P
since (z) ∈ P .

For part 3, consider any path py ∈ P . Identify µ(py) = x, Take any S ∈ N and z ∈ XS .
From Assumption 3, S ∈ E(x, z). Either z ∈ Y − DS(x) and (z) ∈ Y or there is
pz ∈ P̄ ⊂ P . Noting that µ(pz) ∈ Y −DS(x), path py is not S-dominated in P via z.
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Hence, P is indeed a strongly coherent collection of objection paths. It follows from
Theorem 2 that Y is HSREFS if Y satisfies Condition C.

This completes the proof of Step 1.

We now prove the other implication.

Step 2: We now show that (1) implies (3).

Take any absorbing F satisfying Conditions I and E, and suppose Y = µ(F̄ ).

Take any y ∈ Y . Then, there must be a stationary history h such that F (h) = y.
Take any S ∈ N and z ∈ Y ∩ DS(y). Since F satisfies Property I, (h, S, z) is not
stationary. So, using Fact 1, there is pz = (z,B, x0, T, x) such that x ∈ Y −DS(y) and
(h, y, S, z, B, x0, T, x) is stationary.

Next, suppose z ∈ XS − Y . Since z /∈ Y , (h, S, z) is not stationary. Then, Property E
and Fact 1 again imply the existence of pz = (z,B, x0, T, x) such that x ∈ Y −DS(y)
and (h, y, S, z, B, x0, T, x) is stationary.

This shows that Condition C is satisfied.

Thus we conclude that in the class of simple games, any HREFS can also be supported
by the more robust mode of coalitional behavior depicted by HSREFS. Conversely, a
strengthening the solution from HREFS to HSREFS does not bring any cutting power.

6. STRUCTURE OF HREFS

In this section, we describe some results on the structure of HREFS. We point out at the
end of the section that analogous results also go through for HSREFS.

PROPOSITION 1. Let P 1 and P 2 be coherent collections of objection paths. Then, P 1 ∪
P 2 is also a coherent collection of objection paths.

Proof. Let P 1 and P 2 be coherent collections of objection paths. Let P̄ = P 1 ∪ P 2. We
show that P̄ satisfies all the conditions specified in Definition 6.

Clearly, P̄x is nonempty since P 1
x and P 2

x are both nonempty, implying Definition 6.1.

Take any p̄ = (x0, S1, x1, . . .) ∈ P̄ . Without loss of generality, p̄ ∈ P 1. Then, by
Definition 6.2, (xk, Sk+1, . . .) ∈ P 1 ⊂ P̄ , for any k.

Finally, notice that if S does not dominate some p in a set P , then S does not dominate
p in P ′ with P ⊂ P ′. This shows that P̄ satisfies Definitions 6.3 and 6.4
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So, P̄ is a coherent collection of paths.

The following is immediate.

COROLLARY 1. If Y 1 and Y 2 are both HREFS, then so is Y 1 ∪ Y 2.

The corollary suggests the possibility that there may be a “largest ” coherent set.

The Ultimate Undominated Set

For any set of objection paths P , define

ud(P ) = {(x0, S1, x1, ...) ∈ P : for all k, (xk, Sk+1, xk+1, ...) is not Sk+1-dominated in P} .

LEMMA 3. Let P ⊆ P ′. Then ud(P ) ⊆ ud(P ′).

Proof. For any (x0, S1, x1, ...) and any k = 0, 1, ..., if (xk, Sk+1, xk+1, ...) is covered in
P ′ via y, then it is dominated in P via y. Conversely, if (xk, Sk, xk+1...) is not dominated
in P via any y and for any k, then it is not dominated in P ′ via any y and for any k.

Recall that P ∗ denotes the set of all objection paths. Define UD0 ≡ P ∗, and UDt ≡
ud(UDt−1), for all t = 0, 1, 2, .... By Lemma 3, UDt+1 ⊆ UDt. Denote by

UUD = ∩tUDt

the ultimate undominated set associated to the problem. So, the ultimate undominated
set is the limit set, obtained by recursively eliminating dominated objection paths. No-
tice that if X is a finite set, then only finitely many elimination rounds are needed.

The next theorem and corollary provides a condition under which UUD is the largest
coherent collection.

THEOREM 4. Let P = UUD. If Px is nonempty for all x, then P is the largest coherent
collection of paths and so µ(P ) is the largest HREFS.

Proof. It is clear that P satisfies Definition 6.2-4. So, if Px is nonempty for all x, then
P is a coherent collection of objection paths.

Let P be any other coherent collection of objection paths. We show by induction that
P ⊆ UDt, for all t = 0, 1, ....

It is clear that P = ud(P ) since no path is P is dominated because of Definitions 6.3-4.

By assumption P ⊆ P ∗ = UC0. Let P ⊆ UDt. Then, by Lemma 3, P = ud(P ) ⊆
ud(UDt) = UDt+1. Hence UUD contains all coherent collections, and µ(P ) is the
largest HREFS.
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It is straightforward to adapt the proofs of Proposition 1 and Theorem 4 to prove identical
results for strong coherence and HSREFS, after appropriately modifying the definition
of ud(.).

7. NONEMPTYNESS RESULTS

In this section, we show that a non-empty HREFS exists both when the set of social
states X is finite as well as in the case of transferable utility partition function games. In
fact, we prove a stronger result in the latter case by constructing a non-empty HSREFS.

7.1. The Finite Case. Suppose X , the set of social states, is finite. Since we make no
other assumptions about the abstract game, this covers a wide variety of cases such as
hedonic games, social network games without monetary transfers, etc.

Given finiteness of X , the set of acyclic objection paths is finite. This implies that the
ultimate undominated set is, at each elimination round t, non-empty and well defined.
The difficult part is to show that that UDt contains a path px with initial state x, for
arbitrary x ∈ X , as required by Coherence. The proof of the next lemma, which does
this, is relegated to the Appendix.

LEMMA 4. For all ∈ X , there is px such that px ∈ UUD.

The proof of the next theorem follows immediately from Lemma 4 and Theorem 4.

THEOREM 5. If X is finite, there is a non-empty HREFS.

7.2. Non-empty HSREFS for Partition Function Games. In this section, we prove
an existence result for HSREFS for the large class of games represented by partition
function games. In view of the demanding nature of HSREFS, this non-emptyness result
demonstrates the power of history dependence.

Let Π be the set of all partitions of N . An embedded coalition is a pair (S, π) where
π ∈ Π and S ∈ π. With some abuse of notation, we will use v(N) to denote the
embedded coalition v(N, {N}).

A TU partition function game is a mapping v specifying a real number v(S, π) for each
embedded coalition (S, π). That is, v(S, π) is the sum of utilities that coalition S can
achieve if the partition π forms. This formulation allows for externalities -what S can
get depends on the entire coalition structure.

For any coalition S ⊆ N , we let πS denote a partition of S, while ΠS denotes the set of
all partitions of S. Also, Π−S is the set of all partitions of N − S, with typical element
denoted π−S .
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For any π and S, T ∈ π, we use π−S∪T to denote the partition of N − S ∪ T obtained
from π. That is, R ∈ π−S∪T iff R ∈ π and R /∈ {S, T}.

Henceforth, we assume that v satisfies:

Superadditivity : For all π ∈ Π, for all S, T ∈ π, v(S, π) + v(T, π) ≤ v(S ∪ T, {S ∪
T, π−S∪T}

Note that superadditivity ensures that for all π ∈ Π, v(N) ≥
∑

S∈π v(S, π)

Throughout, we will also assume that the partition function v is 0-normalized so that
v({i}, π) = 0 for all i ∈ N and all π ∈ Π with {i} ∈ π.15

We now have to specify the effectivity function associated with a partition function v.
Consider any initial state x. Suppose coalition S deviates from x. It makes sense to as-
sume that the coalition S can choose to form any partition πS ∈ Π. Of course, a specific
partition - say {S} itself- may give it the best short-term payoff given the partition of
N − S that will “result” if indeed S forms. But, it may be in the long-term interest of
S to form a different partition, and we allow that to happen. Next, we have to consider
the partition of N − S that will result once S deviates and forms some πS . Of course, S
cannot influence what partition of N − S will form and we need to allow for this possi-
bility. Since the worth of each embedded coalition depends on the partition structure, it
is notationally complicated to explicitly formalise the effectivity function. Fortunately,
we need to consider only very specific deviations and so do not need to describe the
effectivity function in full detail.

Let x0 ∈ X be the zero state such that ui(x0) = 0 for all i and π(x0) = {{1}, . . . , {n}}.
That is, the partition formed in the zero state is one in which each element of the partition
of N consists of a single individual, and all corresponding embedded coalitions get zero
utility.16

We assume the following.

Assumption 4. For all i ∈ N , N − {i} ∈ E(x, x0) for all x ∈ X .

This is straightforward since N −{i} can always decide to break up into singletons. We
will use this assumption repeatedly in the proof of a crucial lemma.

DEFINITION 9. Player i is essential iff v(N) > v(N − {i}, {N − {i}, {i}}).

So, player i is essential if she adds positive value added to coalition N − {i}. Let

Z = {x ∈ X :
∑
i∈N

ui(x) = v(N), ui(x) > 0, if i is essential}.

15This is without loss of generality.
16The latter follows since v is 0–normalized.
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LEMMA 5. For all (x, y, k) ∈ Z ×X ×N , there is py such that uk(µ(py)) ≤ uk(x).

Proof. Choose any triple (x, y, k) ∈ Z ×X ×N . We consider two cases.

Case 1: uk(y) > 0.

Since y ∈ X , superadditivity implies that
∑

i∈N ui(y) ≤ v(N). So, there is y′ ∈ X
(possibly y = y′) such that

∑
i∈N ui(y

′) = v(N), ui(y
′) ≥ ui(y) for all i ∈ N

Suppose uk(x) > 0. Since uk(y′) > 0, this implies that there is z ∈ X such that∑
i∈N

ui(z) = v(N),

ui(z) > ui(y
′), for all i 6= k,

uk(x) ≥ uk(z) > 0.

Then, define py = (y,N − {k}, x0, N, z). Clearly, py satisfies all the requirements of
the lemma.

Next, suppose uk(x) = 0. Since x ∈ Z, i is not essential. So, v(N − {k}, {N −
{k}, {k}}) = v(N) Clearly, this allows us to choose z ∈ X such that z(π) = {N −
{k}, {k}}, N − {k} ∈ E(y, z) and

ui(z) > ui(y), for all i 6= k,∑
i 6=k

ui(z) = v(N − {k}, {N − {k}, {k}}) = v(N),

uk(z) = 0.

Then, let py = (y,N − {k}, z). Again, py satisfies the requirements of the lemma.

Case 2: uk(y) = 0.

Suppose k is essential, so that uk(x) > 0. Let {k} ∈ E(y, w) where {k} ∈ π(w). Then,
uk(w) = 0. Note that we do not make any other assumption about π(w) or ui(w) for
i 6= k.

Since k is essential,
∑

i 6=k ui(w) < v(N) Since uk(w) = 0, we can choose z ∈ X such
that ∑

i∈N

ui(z) = v(N),

ui(z) > ui(w), for all i ∈ N,
uk(x) ≥ uk(w).

Then, py = (y, {k}, w,N, z) satisfies the requirements of the lemma.
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Suppose k is not essential. If y ∈ Z, then py = (y) satisfies the requirements of the
lemma. If y /∈ Z, then either

(i)
∑

i∈N ui(y) < v(N) = v(N − {k}, N − {k}, {k}}), or

(ii) i 6= k is essential, but ui(y) = 0.

If (i) holds, then let py = (y,N − {k}, z) where
∑

i 6=k ui(z) = v(N − {k}, N −
{k}, {k}) = v(N), and ui(z) > ui(y) for all i 6= k, uk(z) = 0 Clearly, such z ∈ Z
exists and so py satisfies the requirements of the lemma.

If (ii) holds, then let i be essential, and ui(y) = 0. Then, let {i} ∈ E(y, w) where {i} ∈
π(w). Using the fact that

∑
j 6=i uj(w) < v(N), we can choose py = (y, {i}, w,N −

{k}, z) such that∑
j 6=k

uj(z) = v(N − {k}, {N − {k}, {k}}) = v(N), (since k is not essential)

uj(z) > uj(w), for all j 6= k,

uk(z) = 0.

This completes the proof of the lemma.

Let PZ is the collection of objection paths terminating in Z:

PZ = {p ∈ P ∗ : µ(p) ∈ Z}
We will prove that Z is HSREFS by showing that PZ constitutes a strongly coherent
collection of objection paths.

THEOREM 6. Z is an HSREFS.

Proof. Take any y ∈ X . Choose arbitrary x ∈ Z and k ∈ N . Lemma 5 implies that there
is py ∈ PZ such that uk(µ(py)) ≤ uk(x). Hence, Py ∩ PZ is nonempty and Condition 1
is satisfied.

For any objection path in PZ , a subpath that begins from a state in the middle is also an
objection path of blocking coalitions with a terminal element in Z, and hence a member
of PZ . That is, Condition 2 is satisfied.

Next, take any pz ∈ PZ with x = µ(pz). Suppose that pz is S−covered via y for some
S. Choose some k ∈ S. By Lemma 5, there is an objection path py ∈ PZ such that
uk(µ(py)) ≤ uk(x), contradicting the assumption that pz is S−covered via y. Hence,
Condition 3 is satisfied.

Now, take any (z) ∈ PZ . Suppose that (z) is S−covered via y for some S. Choose
some k ∈ S. By Lemma 5, there is an objection path py ∈ PZ such that uk(µ(py)) ≤
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uk(x), contradicting the assumption that (z) is S−covered via y. So, Condition 4 is also
satisfied and so PZ is indeed strongly coherent.

This shows that Z is HSREFS.

HSREFS need not be unique. We leave it to the reader to check that

W = {w ∈ X :
∑
i∈N

ui(x) ≤ v(N), ui(x) > 0, if i is essntial}

is also HSREFS. Of course, Z ⊆ W .17

Thus we conclude that, the in class of simple games, any HREFS can also be supported
by the more robust mode of coalitional behavior depicted by HSRE. Conversely, by
stregthening the solution from HREFS to HSREFS does not bring any cutting power.
Also, the solutions are identifiable by objections paths of length 2 (at most).

8. RELATIONSHIP TO OTHER SOLUTION CONCEPTS

The core does have a strong stability property in the sense that all myopic solution
concepts will typically contain the core. The stark difference between myopic and far-
sighted concepts is brought out by the next example which shows that there may be
abstract games where the core is disjoint from HREFS.

EXAMPLE 3. Let N = {1, 2, 3}, X = {a, b, c, d} be the set of social states, where each
state is a utility vector (v1, v2, v3) showing the utility derived by each individual i.

a = (1.5, 2, 2), b = (1, 3, 2), c = (2, 1, 3), d = (3, 2, 1) The effectivity relations are
1 ∈ E(a, b), {1, 3} ∈ E(b, c), {1, 2} ∈ E(c, d), {2, 3} ∈ E(d, b) Then, only individual
1 has the power to change the state a and she can only replace it with b. But she is
worse-off doing so. Hence, a must be in the core. In fact, the core is {a} since the other
three alternatives are involved in a cycle.

One HREFS is {b, c, d}, disjoint from the core, However, there is a second HREFS which
is the entire set.

We now show that HREFS is a refinement of consistent sets. Even the largest (in terms of
set inclusion) HREFS is a subset of the largest consistent set. Since the usual criticism of
the LCS is that it is too permissive this makes HREFS a more attractive solution concept.

PROPOSITION 2. If P is a coherent collection paths, then µ(P ) is a consistent set.

17The proof that W is HSREFS is almost identical.
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Proof. Suppose that µ(P ) is not a consistent set.

Then there is an x ∈ µ(P ), a y and an S ∈ E(x, y) such that uS(z) > uS(x), for all
objection paths (z0, S1, ..., Sm, zm) with z0 = y and zm = z ∈ µ(P ).

But since P is a subset of all objection paths, this contradicts the assumption that (x) is
not S−covered in P ′ via y.

The Farsighted Stable Set

The farsighted stable set (Definition 2) is not necessarily be HREFS in abstract games
since domination chains may violate maximality.

However, as we have demonstrated in Section 5, the problem of maximality disappears
in simple games. This essentially yields the following.18

PROPOSITION 3. If V is a farsighted stable set in a simple game, then V is HREFS.

It is trivial that V must satisfy Conditions I and E. So, this result follows from our
characterization result on simple games.

9. CONCLUDING REMARKS

This paper studies the consequences of memory on coalition formation. To this end, we
extend the rational expectation stable set solution of Dutta and Vohra (2016) by allowing
coalitions to condition their behavior on the history of blockings. The resulting solution
satisfies the same stringent stability properties as the Dutta-Vohra solution but has an
extra degree of freedom because of history dependence.

History dependence turns out to have very powerful implications. We show that a his-
tory dependent rational expectation solution exists under very general conditions, for
example whenever the set of states is finite. What is more, we demonstrate that even the
more stringent version of the solution, which requires that the current coalitional move
is optimal also for non-active coalitions, exists and is nonempty in all partition function
games (containing, for example, all TU-games). We are not aware of prior existence
results in the literature with similar robustness and existence properties. Our results sug-
gests that the introduction of history dependence in the study of coalition formation is a
fruitful avenue for further research.

18See Ray and Vohra (2017) for a related result.
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10. APPENDIX

In this Appendix, we prove Lemma 4: for all x ∈ X , UUD contains some objection path
originating from x.

Proof of Lemma 4

Since UD0 = P and hence contains objection paths originating from x, it suffices to
prove that for all x ∈ X , for all t = 0, . . ., if UDt

x 6= ∅, then UDt+1
x is nonempty as

well.

Choose some set P of objection paths. Find, for any x such that (x) 6∈ ud(P ), a coalition
S(x) such that (x) is S(x)−dominated in P .

For any x, identify a set C(x, P ) such that

(6) C(x, P ) = {y : (x) is S(x)− covered in P via y}.
Further, denote by C∗(x, P ) the subset of C(x, P ) that contains any y that induces the
maxmin payoff to coalition S(x) in C(x, P ). That is,

(7) C∗(x, P ) = {y ∈ C(x, P ) : max
z∈C(x,P )

min
p∈Pz

uS(x)(µ[p)) 6� min
p∈Py

uS(x)(µ[p))}.

Note that (x) ∈ ud(P ) if and only if C(x, P ) = C∗(x, P ) = ∅.

We say that (x0, S(x0), ..., xJ) is a C∗(·, P )−sequence that originates from x if x = x0
and xj+1 ∈ C∗(xj, P ) for all j = 0, ..., J − 1.

Denote by C
∗
(·, P ) the transitive closure of C∗(·, P ). 19 Denote the set of maximal

elements of C
∗
(·, P ) by V (P ) = {x ∈ X : y ∈ C∗(x, P ) implies x ∈ C∗(y, P ), for all

y}.

LEMMA 6. Let y ∈ C∗(x, P ). Then, for any py ∈ Py, the sequence (x, S(x), py) is an
objection path and it is not dominated in P ′ if P ⊆ P ′.

Proof. Since py is a member of Py, and x is S(x) covered in P via y, (x, S(x), py) is an
objection path.

If (x, S(x), py) is dominated in P ′, and P ⊆ P ′, then there is z such that

min
pz∈Pz

uS(x)(µ[pz)) ≥ min
pz∈P ′

z

uS(x)(µ[pz))� uS(x)(µ[p))� uS(x)(x).

The third inequality, which implies that (x, S(x), py) is an objection path, follows from
the assumption that y ∈ C(x, P ). Thus the first inequality implies that also z ∈ C(x, P ).
But together with (6) this contradicts the assumption that y ∈ C∗(x, P ).

19That is, y ∈ C
∗
(x, P ) if and only if there is a C∗(·, P )−sequence originating from x and ending in

y.
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LEMMA 7. For any t = 0, 1, ..., for any x0 ∈ X , let (x0, S(x0), x1, ..., xJ) be aC∗(·, UDt)−sequence
with (xJ) ∈ UDt+1. Then (x0, S(x0), x1, ..., xJ) ∈ UDt+1.

Proof. Of course, UDt+1 ⊆ UDt for all τ . So, Lemma 6 implies that the sequence
(xj, S(xj), xj, ..., xJ) is not dominated in UDt, for any j = 0, 1, ..., J − 1. Since, in
addition, (xJ) is not dominated in UDt, we have (x0, S(x0), x1, ..., xJ) ∈ UDt+1.

LEMMA 8. For any t = 0, 1, ..., for any x ∈ X, there is y ∈ C
∗
(x, UDt) such that

(y) ∈ UDt+1.

Proof. Claim 1: For any t, if x ∈ V (UDt) and (x) ∈ UDt, then (x) ∈ UDt+1.

Proof : Suppose that (x) ∈ UDt−UDt+1 and x ∈ V (UDt). SinceX is a finite set, there
is a C∗(·, UDt)− sequence (x0, S(x0), x1, ..., xL) such that x = x0 = xL. By Lemma
7, (x1, S(x1), x2, ..., xL) ∈ UDt. But then, since xL = v0, x0 is not dominated via x1 in
UDt, a contradiction to the hypothesis that x1 ∈ C

∗
(x0, UD

t). �

Claim 2: For any t, C∗(x, UDt) = C(x, UDt), for all x ∈ V (UDt).

Proof : Fix any x ∈ V (UDt). It suffices to show the directionC(x, UDt) ⊆ C∗(x, UDt).
If (x) ∈ UDt+1), then C(x, UDt) = C∗(x, UDt) = ∅.

Suppose that (x) 6∈ UDt+1.Since x ∈ V (UDt), there is a C∗(·, UDt)− sequence
(x0, S(x0), x1, ..., xL) such that x = x0 = vL. Choose any x′ ∈ C(x0, UD

t). By
Lemma 6, (x0, S(x0), p

′) ∈ UDt for any p′ ∈ UDt
x′ . Iterating backwards on j =

L− 1, L− 2, ..., 2 it follows that

(x1, S(x1), ..., xL−1, S(xL−1), x0, S(x0), p
′) ∈ UDt, for any p′ ∈ UDt

x′ .

Thus ∪p∈UDt
x′
µ[p) ⊆ ∪p∈UDt

x1
µ[p) implying, by (7), that x′ ∈ C∗(x0, UDt). Since x′ is

an arbitrary element of C(x0, UD
t), we conclude that C(x0, UD

t) = C∗(x0, UD
t).

Claim 3: For any t, for any x ∈ V (UDt) there is x′ ∈ C
∗
(x, UDt) such that (x′) ∈

UDt+1.

Proof: Initial step: t = 0. Then (x′) ∈ UD0 for all x′ ∈ X. By Claim 1, (x′) ∈ UD1,
for all x′ ∈ V (UD0).

Inductive step: t > 0. Let the claim hold for t − 1. We show it holds for t. By the
definition of V, C

∗
(x, UDt) ⊆ V (UDt) for all x ∈ V (UDt). Thus, by Claim 2,

(8) C(x, UDt) ⊆ V (UDt), for all x ∈ V (UDt).



33

By the maintained assumption, there is a x′ ∈ C
∗
(x, UDt−1) such that (x′) ∈ UDt.

Since C∗(·, UDt−1) ⊆ C(·, UDt−1) ⊆ C(·, UDt), also v′ ∈ C(v, UDt). By (8), v′ ∈
V (UDt). By Claim 1, (v′) ∈ UDt+1. �

Claim 4: For any x ∈ X, there is y ∈ C∗(x, UDt) such that (y) ∈ UDt+1.

Proof : If x 6∈ V (UDt), then there is y ∈ C∗(x, UDt) ∩ V (UDt). By Claim 3, there is
z ∈ C∗(y, UDt) such that (z) ∈ UDt+1. By transtitivity, z ∈ C∗(x, UDt).�

It is now follows by Lemmata 7 and 8 that:

LEMMA 9. For any t = 0, 1, ..., for any x ∈ X, there is a C∗(·, UDt)−sequence
(x0, S(x0), ..., xJ) such that (x0, S(x0), ..., xJ) ∈ UDt+1

x .

This completes the proof of Lemma 4.
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