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The Advantage of Dual Discrimination in Lottery Contest Games'
by
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Abstract
In a simple class of contest games, the designer can combine two types of
discrimination: a change of the contestants’ prize valuations subject to a balanced-
budget constraint (direct discrimination), as well as a bias of the impact of their efforts
(structural discrimination). Applying dual discrimination, the designer reduces
(increases) the higher (lower) prize value up to a mimimal (maximal) level, but
suitably increases (reduces) the corresponding prize share. Our main result establishes
that in some cases this dual discrimination is advantageous and can yield almost the
maximal possible efforts - the highest valuation of the contested prize. The efforts in
our setting can therefore be larger than those obtained under alternative contests with
optimal structural discrimination. This is true in particular with respect to the
optimally biased simple N-player lottery, Franke et a/. (2013). In contrast to the main
findings in Franke et al. (2014a, 2014b), in our setting, efforts under the simple lottery
are not necessarily smaller than those under an optimally biased N-player all-pay
auction. Finally, the exclusion principle noted in Baye et al. (1999) — the elimination

of the strongest player - is not valid under dual discrimination.
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1. Introduction

In the vast contest literature that has numerous applications (internal labor market
tournaments, promotional competitions, R&D races, rent-seeking, political and public
policy competitions, litigation and sports), the most commonly assumed contest
success function (CSF) is the simple lottery proposed by Tullock (1980), see Konrad
(2009) and references therein. In two-player contests, for x, =0, x, =0, and 6 >0,
this simple logit functions take the form:

X1
(1) pi(x,x,) = 1 x, +dx,
0.5 if x,=x,=0

if x +x,>0

Usually, x, and x, are interpreted as the contestants’ efforts. However, p, has two

possible interpretations. It can be interpreted as contestant 1’s winning probability of
an indivisible prize or as his share in a divisible prize. In turn, the winning probability

of contestant 2 or his share in the prize is equal to p, =1- p,. Henceforth, we use the

second interpretation, as in Corchon and Dahm (2010), Franke et a/. (2013), Lee and
Lee (2012), Warneryd (1998). Nevertheless, although under this interpretation there is
no uncertainty in the model and the contestants compete on the certain shares of a
divisible prize, we preserve the terms “contest” and “CSF”. The asymmetry between
the impact of the contestants’ efforts is captured by the parameter 6 > 0.

In our extended setting, we do enable the contest designer to control J, as first
suggested in Lien (1986, 1990) and later by Clark and Riis (2000). This means that
the designer can apply structural discrimination that affects the contestants’ shares in
the contested prize (the same efforts may yield different shares, depending on the
value of this parameter). By (1), a reduction in ¢ increases the bias in favor of
contestant 1, who is assumed to be, with no loss of generality, the more motivated
contestant (the one with the higher prize valuation). Furthermore, 0 <d <1 (J >1)
implies a bias in favor of contestant 1 (contestant 2). When ¢ =1 the contest is fair.
The empirical relevance of such discrimination in contests with a logit CSF is
thoroughly discussed in Epstein et al. (2011) and Franke (2012). Franke et al. (2013)
have justified structural discrimination on the grounds that it lends itself to a very
appealing competitive-market interpretation. For a recent survey of discrimination in
contests, see Mealem and Nitzan (2016).

Fang (2002) considered the unbiased simple class of N-player lottery contests



assuming thathe discretionary power of theontest designeis restricted to the
exclusion of specifiplayers He showed that the exclusion principle, established in
Baye etal. (1993) for an alpay audbn framework with complete information, is not
valid in an unbiasedottery framework.Franke efal. (2013) extend ik result to the
biasedlottery contestshowng thatit is never optimal for thelesignerto discourage
strongcontestantérom participaing in order toenhancecompetitive pressure among
the remaining weakerontestantsMoreover,they have pointed ouhe existence of
an additional inclusion principlesome weak contestantwho are inactive in the
unbiasedcase of Fang (2002are encowaged tobecomeactive This implies that in
their setting of structural discriminatiprihe designerwill endogenously induce a
more leveled playing field in comparison the unbiasedcontest setting This
enhancesompetition andin turn, increases ttmntestantséxerted effod. However,
as long asN > 2, it is not optimal for thedesignerto completelylevel the playing
groundso some weak contestants matijil remain inactive althoughat least three
will always beactive

More recatly, Franke etal. (2014, 2014bh have shown thaan optimally
biased aHlpay auction contest with structural discriminatiomnd an optimal Head
starts allpay auctionalways dominate the optimally biased lottery contiésgields
larger efforts. This isin contrast to theoutcome of thecomparisonbetweenthe
unbiased versions of these contest moddisre he (unbiased) ajbay auctioncan
yield less effod when the exclusion principle appliegt is effort-enhancingto
exclude the playewith the higlest prize valuatiorirom participation but the two
active weaker contestants may expéesb effors than all the active players in the
lottery contest Franke etal. (20148) show thatwhen the designercan apply
structural discriminationthe exclusion principle of the alpay auction becomes
obsolete. Theesignemill always bias the ajpay auction such that the two strongest
playersareactive and, moreover, compete on equal terms (the strongest player is not
excluded but his effectiveness is sufiently weakenel All other players choose to
be inactive Applying a less extreme discrimination in tlo&ery contest inducemore
contesants (at least three) to participaBut the effect ofincreasd competitiveness
due to a higher number afctive contestantscannot offset theeffect of reduced
competitiveness due tless extreme discrimination and, consequently, the optimally
biased alpay auction yields larger efforts than the optimally biased simple lottery.

When the designer applies head tstdiscrimination, Franke et al. (2014b) have
2



shown that the total efforts of N contestants, N = 2, are larger in an all-pay auction
than in a simple lottery.

In our contest environment, the designer’s ability to discriminate is enriched in
comparison to Franke et al. (2013, 2014a, 2014b). In addition to structural
discrimination, i.e., the control of J, the contest designer can affect the contestants’
incentives by directly changing their rewards in case of winning the contest, thereby
increasing or decreasing the gap between their prize valuations. In other words, the
designer can manipulate the size of the divisible prize. Such a policy is usually based
on a “give and take” mechanism in case of winning, which is henceforth referred to as
direct discrimination. This form of discrimination has been recently introduced and
studied in Mealem and Nitzan (2014, 2016), focusing on its comparative application
in an all-pay-auction relative to a logit CSF, disregarding the possibility of structural
discrimination.

A crucial element in this second type of discrimination is the balanced-budget
constraint faced by the contest designer. This constraint, which limits the design of the
optimal tax schedule, implies that when one contestant's winning a share of the prize
is subjected to a positive tax, the share of the prize won by the other contestant must
be subjected to a negative tax, viz., the granting of a subsidy. The tax scheme consists
then of two numbers (negative and positive) that are added to the contestants' initial
valuations of the divisible prize. These numbers need to satisfy the requirement that
the designer’s net expenditures are equal to zero in equilibrium. Of course, whether
the constraint is satisfied or not depends both on the applied structural and direct
discrimination; the former determining the contestants' shares in the prize and the
latter the actual modified values of the prize.

The dual discrimination setting significantly changes the results obtained in
Franke et al. (2013, 2014a, 2014b). Most importantly, in a simple lottery with dual
discrimination, the maximal efforts can be increased to almost the initially highest
prize valuation.” These efforts are larger than those obtained in Fang (2002), where
discrimination is not allowed, and larger than the efforts obtained in Franke et al.
(2013, 2014a) where only structural discrimination is allowed (by Theorem 3.4 in

Franke et al. (2014a), the efforts in the optimally biased simple lottery are less than

? This is implied by our main result, assuming that the upper bound of the net value of the prize
approaches infinity and the lower bound of the net value of the prize approaches zero.

3



the average of the two highest prize valuatioris)our simple lotterycontest with
dual discrimination, total effortsan be larger than thosdtained inany optimally
biasedcontest game and, in particular, in Brplayer all-pay auction.This is in
contrastto the main resudtin Franke etl. (2014, 20140).

Finally note thatn a simple lottery contest with dudiscrimination, even
when N > 2, the maximal efforts can be increased to almost the initially highest prize
valuation, whee only two contestants are active in equilibriuame of them must be
the contestant with the highest prize valuation, but the seaxdivé player can be any
of the other contestants. This result differs from the ré$tbkorem 4.6) obtained in
Franke efal. (2013), wherat least three contestants are active in the equilibrium of
the simpleN-player contest with just structural discrimination. Furthermore, the
exclusion principle of Baye al. (1993) is not necessarily valid in our extended
contest becaudbe strongest player can be indutede always active.

Interestingly, inthe extreme case olr setting(see footnote 1xhe individual
with the lower prizevaluation is offered the illusion of competing on a very large
prize, albeit only a very smadhare of it can be won. The expected value of his prize
is nevertheless positive and in fact, almost equal to the initial prize valuation of his
rival, the individual with the higher prize valuation. The existence of effective
incentives that induce pacipation in the contest together with the existence of an
extreme illusion that results in efforts incurred by the individual with the lower prize
valuation is a distinctive interesting feature of our contest. This feature is manifested

in theexamples preentedn thenext section

2. lllustration of direct discrimination

Our model of dual discrimination i simple lotterycontestis of particular relevance

in certain applicationsTo illustrate the plausibility of direct discrimination with a
balanceebudget constraint in contests, we present two applications. In the first one,
the contest designer typically engages in a certain activity (somedegfied task or
project) restricted to a certain budget. Although the budget is earmarked only for this
activity, it can be used to manipulate and affect the incentives of the contestants (the
contractors) who compete for the outsourced project. But a designer who engages in
such manipulations and in particular, in discrimination, must satisfy the contest
balancedbudget constraint that we assume in order to ensure the overall budget

constraint is satisfied:



1. Municipal projects A municipal authority is conducting a tender for a divisible
project such as urban development including development of a sewaga,syste
roads, sidewalks and gardenifigvo companies compete for a share in the project.
The municipal authority is restricted to a budget allocated, for example, by the
federal government. Although the budget is allocated only to urban development,
it can beused to influence the incentives of the competing contestants by applying
the two possible modes of discrimination. In order to satisfy the overall budget
constraint, a designer who resorts to structural and direct discrimination must also
satisfy the assued balanced budget constraint.

The next application describes a situation where the baldnaigbt
constraint is due to a different reason. The constraint is no longer related to a fixed
budget which is at the disposal of the designer for the purposarnfing out a
particular project. It is due to the fact that the competing contestants are (at least
partly) controlled by a parent companyhe parent company may not prevent
competition between itavo subsidiariedy custom or by the law. Howevatespite
the existing competition, the parent company still has the ability to enforce some
overall financial discipline as well as the power to ensure that the designer's strength
in manipulating the companies is limited. The control of the parent congaiitg
two subsidiariesand its power in dealing with the designer, given the conflict of
interests among them, explains its success in enforcing the balaundgek
constraint:

2. Portfolio distribution betweemwo investment houses$n the capital markethe
commission rate charged by an investment house is usually inversely related to the

size of the customerOs investment. Suppose that the average commission rate in

the industry isz and that a large client (e.g., a pension fund of esdarge
employer) is interested in distributing its portfoietweenwo investment houses

that are subsidiaries of some parent company. Dett@taffinity among théwo
investment houses, they compete in the markée first investment house has an
established reputation while the second smaller house is relatively less known.
Given the importance of tHarge customer, the preservation of the reputation of

the first investment house (contestant 1) implies that it assigns a higher value to

2 Two such competing investment houses, Psagot and Ofek, were subsidiaries of the leading Bank in
Israel, Bank Leumi. Another example of two such companies is Gadish and Tagmulim, that were two
subsidiaries of another major Israeli bank, Bank Hapoalim.
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the investment of the large customer (the employer’s pension fund). Often, such a
pension fund prefers to invest a large share of its portfolio in the reputable and
usually larger investment house and this enables obtaining a commission rate

lower than z . This implies that the pension fund actually “taxes” the larger and

more reputable investment house relative to z. On the other hand, the investment
house with the lower reputation usually receives the smaller share of the portfolio.
However, the commission rate they charge are higher than z. The balanced-
budget constraint is satisfied because of the market forces; The pension fund is
interested in reducing the commission rate, and the parent company of the two

investment houses is interested in increasing the commission rate.

3. The setting
In our contest there are two risk-neutral contestants,’ the high and low benefit

contestants, 1 and 2. With no loss of generality, the initial prize valuations of the

contestants, », and n,, satisfy the inequality n, =n, or k = " -1 and that the contest
n,

designer is assumed to have full knowledge of the contestants’ prize valuations. In
two-player contests, for x, =0, x, =0 and 6 > 0, the simple logit functions take the
form:

M
(1) Py (x;,x,) =1 x, +0x,
0.5 if x,=x,=0

if x+x,>0

and therefore p, =1- p,.

Direct discrimination via differential taxation of the contested prize that

affects the contestants’ actual prize valuations, n, and n,, is a pair of (positive or
negative) amounts, & and &, that changes the prize valuations to (nl+/ 1) and
(n2+./2) where O<n" n +#" n<! (the lower and upper bounds of the
contestants' actual net prize are the parameters n and n). We also assume that the

contest designer faces an ex ante expected balanced-budget constraint, that is, &, and

&, must also satisfy the requirement that:

* The case of multiple contestants is dealt with later on.
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(2) P/t P/, = 0.
Given the contestantsO fixed prize valuations amdC8F, the function that

specifies the contestantsO winning probability given their efforts,, x,) , the

expected net payoff (surplus) of contesiast

3) E(u)=p(x.x)Nn +7)! x (i=1,2)
In the optimal contest digg setting, the objective function of the contest designer is:
(4) G=X+X,.

The designer selects, /, and’/,. In this case, the two contestants maximize their

net payoffs:

G E(y)= " jl,#(z (n,+")! x and E(u2)2x1+—2#5<2(n2 + )0 %,

If the designer select{/,,/,)=(00), then the optimal is / =" and the

n2
corresponding efforts are equal ®:O.2dn1+n2), see Epstein et .al(2013).
Therefore, in the following, we assurﬁe_,”z)! (0,0) and from (2) we get that

1,1,<0. Let

(6) d=

By the first order conditions (maximization of (5)),
d(n, +/,)

. _d(n+7) R
7 =—\1 "1/ gndx. =
(7) X - and x, (d +1)2

(d+1)

and, therefore,

8 G=x +X, =
(8) X X, [@+1)

d 1
9 =—  and =
(9) Py d+1 and p, d+1
and the balancebdudget constraint (2) takes the form

d 1

10 / o= J +_— | =
( ) p11+p22 d+1l+d+12 O
or
(11) d/,+/,=0



By the balanced-budget constraint (11), d = 5 Substituting d = - £ in (7) we get

g g
that G = x; +x, = _glgz(n, i -HZQ +€2). By (6) and d = 5 we get that in
(51 - 52) &
equilibrium,
(12) S=_[M*téa &
n,+¢&, | &,
and the positive expected net payoffs are:
(13) u*=M and u‘;M_
b (d+1) o(d+1)
Therefore, the designer objective function is:
(14) G(é‘ e )=_51£2(n1+€1+n2+€2)
1“2
(51 - 52)2
and his optimal strategy (! ! 2) solves:
(15) Max G(sl,gz)
(epep)ec
where
(16) C:{(sl,sz):nsn1+£1sﬁ,r_lsn2+£2sr_1,€1£2<0}

Proposition 1

Assume that n, >n,, N >0 is sufficiently close to zero, and n is sufficiently large.

Then,
o)<t m ) okt oot
' (r_1! n+n!n,
o =t nlntn) oot nfnt n)
n'n+n!n, n'n+n!n,

. nprnf oo ntny
(ﬁ!r_1+n1!n2)2’ ’ (ﬁ!g+nl!n2)2

To prove the above, let

(17) Cl :{(!1'-/2):[] ) n + !1 " F‘:D ) n, + -/2 ) ﬁ"ll <0< -/2}
and
(18) C, ={(./1,./2):r_1" n+/"nn"n+/,"n,/, <0</1}.



Note thatC=C,! C,.

Lemma 1l

Assume thah, >n,, n>0is suficiently close to zero, and is sufficiently large.

Then,
(a)arg(l\@x G(# {@lnlnln)}
()
"—{(ﬁ(nl,n(nz)} if n102n2(3n$
arg Max_G(3,2) (), (n) 3
e !yf,f/{”(”“”‘”)’:m (nefit n>2n, (3ny

Proof of Lemma 1
We first show §). Notice that
#G _ L {(n+3r,)+ 1,0+ 1, )

#! (r,m 1,7
19 1 1 2
) 1, 0n3) e 0 4)
#'12 ('/2 ! '/1)3
wheren=n, +n,. Thus for/, <0</,
;ﬁlw # 1,(n+37,)>"7,(n+7,)
(20) o
$T>0 # 1(n+37)<"1,(n+7)
"2
Therefore, for/, >0,
/,(n+/,))#
21 MaxG(/,,/,)= - n,- 22
(21) argMaxG(/,. /) ma%n W, g
and for /, <0,
11( +1),$ >
Imln&n)n,) s if n+32,>0
(22) argMaxG(.le) % N+3L 4 #
|
0/5]) n, if n+3Z (On
Let (71,72)" arg Max G( »/,). Then

172



(23) (1= maxgn! 1! (n+ ()}

=n!
% n+3(2 # o
beause if "> =n! n,, then
(24 o )t g GG Bndoen)

% n+3(2 = 3n!2n,+n

when n is sufficiently large and if/, = M and /, = M then

n+3/: n+3/>
(1.7:)=(00) or (105nt05n) . Therefore (%, %)=(nt n,ntn,) or
%' n,' (( )F However, because
V% n+3(1 '
(25) n+3“%=n,! 2n +3n<0

when n is sufficientlyclose to zerowe must have("l, "2)= (g! nl,ﬁ! nz).

We next showly). Let (7 / ) arg Max G( " ) By a similar argument

(r2) e
(7’1,7’2):(5! n,n! nz) or § M n2| , but the latter solution is also
% N+3(2
possible ifn+3"; =n, ! 2n,+3n>0. Q.ED

Proof of Proposition 1

Sincen, >n,, we have

n n _(n1! nz)(ﬁzl DZXFH'D! n ! n2)2
26 Gt n.nt n,)1 Gt nunt 0= A 50
n'n+n ! nz) (n! n'n +n,

If n,>2n,! 3n, then we can verify that

- odntnfn,tn) o8
InWG(D natn) G nl2n,+3n " u

(27)
n(2n, +4n,)! 9n® +n,(3n, ! 4n,) ! n(7n,! 4n,)! 9n” +2nn,

8n+4n ! 4n, 8n+4n ! 4n,

>0

llllll

when n is sufficiently small anch is sufficiently large. Q.ED
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In the next proposition, we obtain a sufficient condition for the valuesaofin .

Proposition 2

Assume that, >n,, n=nr, n=2, andr >45. Then,
r

R - +nr?
G(”l,”2)=Gn! n,n! nz):—n(21+rr11)r2 ;
_ n _ nr’

Xl (1+r)2’ 2 (1+r)2’
c_ Mr_onr
R T R T

Proof of Proposition 2

We show that > 4.5suffices the assumption that> 0 is sufficiently close to zero

and n is sufficiently large.
We first consider the proof of Lemma 1, whe@))(and @5 use this
assumption. Theeft-hand side ofZ4) is reducedo

(! n,)! &, (2ln +_72)$ (n ! ) et 2nrt n, +2n,)

0% N+3(s r[(3r +2)n, ! 2n,]

which is positive ifr >4.5. The lefthand side ofZ5) is reduced to
n+3"=(r +3)&! 2n,
r

which is negative ir > 4.5.

We next consider the proof of Propositién It is enough to show that i

n,>2n,! 3n=(2r! 3™ andr>4.5 then
r

G([]' n,n' nz)' G§:1+Dz)n(n2+3£)n n2f>0.
0'1 2 —

The lefthand side is reduced to

LI
ar(r +2P[r(n," n,)+2n,] )

where

f(r)=rn(3n,! 4n,)+r2n,(n, +2n,)+rn,(2n,! 5n,)+n?

11



Note thatn, > (2r ! 3)"2 andr > 4.5 imply
r
n2
3n,! 4n, > (2r! 9)T>0
Thus, f '(r)>0 and
f'(r)>f'(Q)=1In?! 6nn,! 50 >0
becausen, >n,. Consequently,

f(n>f@=4n21 n2)>0if r>45. Q.ED

It is straightforward to verify that comparative statics with respect to the

n * I *
paraneterr yields the following results:"ﬁ =1 2n, <0, X2 = ZLY

) d
r @+ry 'r o (@+r) >0an

"G _ 2(nr! n,)
" (1+r)

of a change im on the efforts of player 1 relee to its negative effeain the efforts

> 0. The later effectis due to the dominance of the positive effect

of player 2 Also note that the equilibrium efforts are increasing in the prize valuations
of the two players, however these efforts are smaller thas long amn, >n,andr

is finite.

3. The N bplayer contest
With dual discrimination total efforts cannot exceed the prize valuation of contestant
1. That s,

Proposition 3

Under dual discrimination, in equilibriunm, ! G.

Proof of Proposition 3
In equilibrium, the net payoff of every dastantunderdual discrimination cannot be
negative, since otherwise he can improve his situation and secure a zero net payoff by
not taking part in the contest. In other words, for every contesiant
u=p({+#)"x!0. Summing over all the contesta, we get that
N N N N N N
Hu =# [pj h+3) XJ]! Oor ;’:/fl(pjnj)+#l(pj$j)“ #x ! 0. SinceG=1 x,

= J=

=1 = =1 =1

12



N N N

and | (pj ”j):O, " (pjnj)! G. Sincen, ! n,!,..,l ngand] p, =1, it must be
=1 j=1 j=1
N
true thatn, 1 " (pn, )1 G.° Q.ED.
j=1
Proposition 4

If N=2andn >n,, then the contest designer can always rssuch that the
equilibrium efforts are sufficiently close . In this casex,” n,! n,u, ! n and

u,! 0.

Proof of Proposition 4

- . s\ _n,+nr? o : :
It can be verified thatG(,/l,.lz)_W <n, and limG=n, . Since G is
+r !
continuous and monotone inthere exists such thatG is sufficiently close tan, .

Q.E.D

By Proposition 3we have shown thahe contestants cannot be induced to exert
larger effortsthann,. Therefore Proposition4 can be extended to the caseaoify
numbe of contestant®l. In the more general mulfilayer contest, the designer has to
reduce the stakes ™ ! 2 contestants to zero, making sure that contestant 1 with the

highest stake is not included among th&mat is,

® This result is also valid for unbiased contests or for contests with alternative modes of discrimination,
when discrimination is througmodifying the efforts. The explanation is that in equilibrium, the net
payoff of every contestant cannot be negative, since otherwise he can improve his situation and secure
a zero net payoff by not taking part in the contest. In other words, for evetgstanti,

N N
u=pn" x!0. Summing over all the contestants, we get l',ﬁbiuj =H (p].nj " Xj)! 0 or
j=1 =1
N N N N
| (pjnj)" | x;.Sincen;! ny!,..} ngand | p; =1, it must be true than, ! " (pjnj)! G.
j=1 #31! j=1 j=1
G

13



Corollary 1
Given any number of contestarlts such that' >n! n ! n,,..! n ! n>0, the

contest designer can always sesuch that the equilibrium efforts are sufficiently

close t, .

Proof of Corollary 1
The proof is based on the following simple tistage strategy that the designer
applies
1. Stage 1The designer selects a contestg'iht{Z,...,N}.
2. Stage 2 For any contestarit! {:L j}, the designer choosés=1!n,. That is
he reduces the initial prize valuatioofsN ! 2 players tazero
3. Stage 3 Applying the dual discrimination strategy with respect to the two
contestantd andj, according tdPropositiord, the designer can induce efforts

that are almost equal 1. Q.E.D.

The explanation of our results is based on the following. iBfeat, assume without
loss of generality thatj=2. On the one hand, the designer applies direct
discrimination in faer of contestant 2 by reducing the stake of contestafthel

contestant with the initially higher prize value)ridoy choosing’/, and increases the

stake of contestant @he contestant with the initially lowerripe value)to n by
choosing’/,. On the other hand, in order to satisfy the bala/ethet constrainthe

designer must create an appropriate bias in favor of contestant 1 by selecting)

thatthe balancedbudget constraintlQ) satisfies equation (12):

)
(12) ":)gn_”l*-l vy
2+!2 !2

Propositions 1 and 2 imply thadual discrimination, that is,”, =n! n and

“,=nln,, is an effective strategy for increasing effo These efforts can be

increased almost up 1, the initial higher prize valuation of contestant 1, provided
thatr" ! .
Propositions 1 and 2 imply that when the designer applies the two modes of

discrimination,each type has a positive Oadded valueO that enhances the exertion of

14



efforts relative to the situation where the designer resorts to just structural

discrimination (Franke eal. (2013, 2014, 2014p). That is, the two modes of

discrimination are suppor&vor Ocomplementing@heir combination can yield larger
efforts than those obtained by just structural discrimination. The advantage of
combining these two types of discrimination relative to the use of just structural
discrimination is due to the disttive features of the contribution of each of these
modes of discrimination to the exerted efforts as described below.

(i) Direct discrimination sufficientlyincreases the initially lower prize valuation
while sufficiently reducing the initially higher prizealation. This increases the
sum of the contestantsO prize valuations to infinity wen and makes the
Oincome effectd (associated with a scheme that increases the sum of the final
stakes from g, +n,) to (n, +/, +n, +/,) =n+n) of this mode of discrimination
the dominant effect.

(i) The maximal possible increase in the sum of the contestantsO prize valuations is
not the result oflirect discriminatioralone. It is rendered possible by structural
discrimination that makesure that the balancdmidget constraint is satisfied.
Specifically, structural discrimination counterbalances the above Oincome effectO
by almost completely favorably discriminating contestant 1, ensuring thatizes
shareconverges to 1. The moderaiieffect described in (ii) is necessary to attain
the maximal efforts. While structural discrimination has a Osecond orderO effect on
efforts that moderates the income effectdokct discriminationit also enables
the dominance of this Ofirst ordeddnme effect on efforts described in (i), namely,
the increase in efforts due to the increase in the sum of the contestantsO prize
valuations. The dominance of the effectdafect discriminationmeans that the
more extreme this mode of discrimination, thigher the total efforts and this

requires the extremity of structural discrimination.

Corollary 1 implies in particular,that dual discrimination can be advantageous
relative to just structural discrimination in thepRyerall-pay auctionor the simple

lottery contest.

8 For a clarification bthe meaning of the income effect associated with direct discrimination, see the
discussion following Proposition 2 in Mealem and Nitzan (2014).
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Corollary 2

If N=2andn, >n,, thenthere exists such that dual discrimination yields efforts
that are larger than the efforts obtained in the optimally biasplhy2r all-pay
auction (simple lottey) contest with structural discrimination. That is,

2
>05(n, +n,)>0.25(n, +n,) or r > 1+ 20k +1j.

k!l

n, +nr’
(1+ry

Note that our results imply that under the assumption rthat sufficiently
large andn is sufficiently cbse to zerdr " ! ), the combination of the two modes
of discrimination results in an outcome which is practically reasonable; the amount
transferred between the contestants is finite. When the actual payment to contestant 2

(the tax taka from contestant 1) is equal {,”, ! n,, since/ converges to zero,
that is, p, converges to zero, it seems that contestant 2 has no incentive to compete.

But this is not the case because he plagaueial role in yielding the almost maximal

possible efforts,. The designer sufficiently increases his prize valuation and by that
induces him to exert efforts that are almost equal to

In the first example of municipal project(see the examples discussed in
section 2), despite the fact that both modes of discrimina@gmnbeextreme, their
combined use still results in a balancdte@. The designer promises the small
company a very large value in casedteives the entire project. The designer, by
structural discrimination, ensures that the small company's share in the project is
sufficiently small, such that the large reputable company wins almost the entire
project. In this extreme and most effectiveedom the designer's point of view, the
large company transfers the small company a reasonable finite amount which is
almost equal to its initial valuation of the entire prajec

In the second example pbrtfolio distribution between two investment hesis
in the extreme cagdbe taxsubsidytransfer between the two investment houses under
the optimal dual discrimination strategy is finite. In particular, by Proposition 1, it is

equal almost ta, the value for investment house 1geftting the entire portfolio of

the large customer. Again, this result is plausible not because of the good will of the
customer, but because it ensures him that the two investment houses exert almost the

maximal efforts.
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5. Conclusion

The enrichment ofhe Obox of toolsO of the contest designer, that is, allowing him to
exercise dual discrimination instead josét structural discrimination clearlyatters

We have shown thatoth modes of discrimination are effectigad thereforavill be
used by the dégnerpossiblyyielding almosthe largest possible effortisat areequal

to the initially highest prize valuation when r" ! . When the extent of
discrimination is sufficiently high, thefforts in our settingare larger than those
obtanedin a biasedlottery contest allowingust structural discrimination, Franke et
al. (2013, 2014, 2014b, While in the latter context, at least three players are active
under dual discrimination, there are just two active contestants; the contagiahew
highest prize valuation and another contestant who can be any of the other contestants.
The exclusion principle noted in Bayeadt (1999) the elimination of the strongest
player - is thus not valid not only in the unbiased lottery contest witbut
discrimination, as shown by Fang (2002), but also inbiasedlottery contest with
dual discrimination.The inclusion principle is, howevevalid, as in Franke edl.
(2013); a weak contestant, who is inactive inuhbiasedcase of Fang (2002), mkde
encouraged to become activeinally, under ourbiasedlottery cortest with dual
discrimination, effortgan be largethan those undeany alternative contest garaaed,

in particular,an allpay auctionThis is in contrast to the main resuh Frankeetal.
(20144a,2014b, where efforts in theptimally biasedN-playerall-pay auctiorcontest
with structural discriminatiomnd an optimal Heasltarts aHpay auctionare strictly

larger than those obtained in the optimally biased simple lotterystonte
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