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Abstract

A growing body of literature examines the relationships between

historical events and contemporary economic outcomes. Recent studies

estimate the causal effects using detailed historical data and contem-

porary microdata of individuals and/or households. In this paper, we

discuss conceptual and econometric issues inherent in the causal infer-

ence following the potential outcomes framework. Using an empirical

example, we also discuss a simple alternative approach to avoid these

issues that is coherent with the potential outcomes framework.
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Recent years have seen growing interest in the causal relationships between

historical events and contemporary economic outcomes (see Nunn (2009, 2014)

for reviews). One feature of the more recent studies is the use of detailed his-

torical data and contemporary microdata of individuals and/or households to

identify the causal effects of history on outcomes (e.g., Dell (2010), Nunn and

Wantchekon (2011)). This paper discusses conceptual and econometric issues

inherent in the causal inference following the Rubin causal model, a framework

for causal inference based on potential outcomes (Rubin (1974, 1977)).1

Although the existing empirical studies do not always explicitly follow the

potential outcomes framework, we follow the framework because it enables us

to raise most effectively the issues inherent in the causal inference for historical

persistence with microdata; many modern empirical works that examine causal

questions adopt this framework (see, e.g., Heckman et al. (1999), Angrist and

Pischke (2009), Duflo et al. (2008), Imbens and Wooldridge (2009), Imbens

and Rubin (2015)). Using an empirical example, we also discuss a simple

alternative approach to avoid certain issues that is coherent with the Rubin

causal model.

The paper proceeds as follows. Section I provides a brief description of

the Rubin causal model, specifying the major premises. Section II considers

the causal inference for historical persistence with contemporary microdata

and discusses fundamental problems inherent in the causal inference. We also

discuss a simple alternative approach to address these problems. Section III

provides an empirical example based on the approach and Section IV con-

cludes.

1The potential outcomes were originally introduced by Fisher (1935) and Neyman (1923)
for randomized experiments and extended by Rubin (1974, 1977) for non-randomized stud-
ies. Holland (1986) labeled this framework the Rubin causal model.
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I. Overview of Causal Inference Using Potential Outcomes

Essential Elements of the Rubin Causal Model. The Rubin causal

model consists of three essential elements (e.g., Holland and Rubin (1988)).

The first is a set (population) of units, U , the size of which is denoted by N ,

indexed by i = 1, . . . , N . Examples of units include individuals, households,

firms, counties, states, and countries. The second is a set of treatments, D,

with each unit being exposed to one of the treatments. For simplicity, we

assume two treatments, Di = {1, 0}, where Di = 1 if unit i is exposed to the

treatment and Di = 0 if unit i is not. The third is a response variable, Y , that

is recorded for each unit after its exposure to either of the treatments.

Causal Inference. The Rubin causal model assumes that each unit i

has two potential outcomes, Yi(1) and Yi(0), where Yi(1) is the value of the

response that would be observed if unit i received the treatment while Yi(0) is

the value that would be observed if the same unit did not. Let Y obs
i denote the

realized and observed outcome: Y obs
i = Yi(Di) = Yi(1)·Di+Yi(0)·(1−Di). The

potential outcomes enable us to define causal effects at three levels: unit level,

population level, and subpopulation level (e.g., Holland and Rubin (1988)).

The unit-level causal inference is defined as the difference between the two

potential outcomes for the same unit:

Yi(1)− Yi(0).

The population-level causal inference is defined as the expectation of the dif-

ference in the unit-level causal effect over population:

E[Yi(1)− Yi(0)].

The subpopulation-level causal inference is defined in many ways. One defini-

tion is the expectation of the difference in the unit-level causal effect over the
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subpopulation with covariates, Xi:

E[Yi(1)− Yi(0)|Xi].

Fundamental Problem of Causal Inference. For causal inference at

any level, we always face the problem that we can never observe both Yi(1)

and Yi(0) at the same time. We can observe, at most, either Yi(1) or Yi(0).

Thus, it is impossible to directly observe the causal effects at all three levels

(“fundamental problem of causal inference,” Holland (1986)).

Assumptions. Causal inference relies on assumptions. Three key as-

sumptions are normally used. The first is the stable unit treatment value

assumption (SUTVA), which requires that the potential outcomes of unit i

are not affected by the treatments received by any other units and there are

no multiple versions of treatments (Rubin (1980, 1986)). The second assump-

tion is unconfoundedness (Rosenbaum and Rubin (1983)),2

(
Yi(1), Yi(0)

)
⊥ Di|Xi.

Under this assumption, the treatment assignment, Di, is statistically indepen-

dent of the potential outcomes, Yi(1) and Yi(0), given Xi. The third assump-

tion is overlap,

0 < Pr(Di = 1|Xi) < 1.

This assumption ensures overlap in the covariate distribution of treatments

and controls. The combination of unconfoundedness and overlap is referred to

as “strong ignorability” (Rosenbaum and Rubin (1983)).

2Unconfoundedness is closely related to the notion of exogeneity in the econometrics
literature (Manski et al. (1992)). The term unconfoundedness is also referred to as “selec-
tion on observable” (Barnow et al. (1980)) and the “conditional independence assumption”
(Lechner (2001), Angrist and Pischke (2009)).
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Identification. The three assumptions justify causal inference, as follows.

Suppose that we are interested in learning the conditional average treatment

effect, E[Yi(1)−Yi(0)|Xi]. Under the three assumptions, the average treatment

effect can be identified by relying only on observed outcomes:

E[Yi(1)− Yi(0)|Xi] = E[Yi(1)|Xi]− E[Yi(0)|Xi]

= E[Yi(1)|Xi, Di = 1]− E[Yi(0)|Xi, Di = 0]

= E[Y obs
i |Xi, Di = 1]− E[Y obs

i |Xi, Di = 0].

Here, since E[Yi(1)|Xi, Di = 1] and E[Yi(0)|Xi, Di = 0] do not depend on Di

under the unconfoundedness assumption, the second equality holds. In addi-

tion, based on the overlap assumption, we can estimate both E[Y obs
i |Xi, Di =

1] and E[Y obs
i |Xi, Di = 0] for a subpopulation with covariates Xi.

Premises of the Rubin Causal Model. The Rubin causal model (sum-

marized above) is based on two premises: (1) Units exist within a specific time

period and (2) the action of treatments and the measurement of outcomes

take place on a common unit.3 Holland (1986) discusses these two premises,

emphasizing the significance of the role of time in the causal inference versus

the associational inference, the standard statistical model that simply relates

two variables over population.

Types of Variables. Holland (1986) also discusses types of variables.

Since treatments must occur within a specific time period, variables are clas-

sified into two types: pre-treatment variables and post-treatment variables

(variables determined before and after receiving the treatments, respectively).

The latter may be affected by treatments while the former are not. Thus, it

3Frameworks have also been developed to address any lack in parts of the units within a
specified time frame due to missing outcomes (dropout) following treatment non-compliance
and “truncation-by-death” (e.g., Frangakis and Rubin (2002), Zhang and Rubin (2003)).
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is possible to identify the causal effects of the treatments by comparing post-

treatment variables (outcomes) between treatment and control groups with

similar values of covariates (under the assumptions).

II. Causal Inference for Historical Persistence

Following the potential outcomes framework, we now consider the causal in-

ference for historical persistence with contemporary microdata.

A. The Standard Approach

Let us first look at the standard approach used in existing studies. These

studies examine historical events such as colonial institutions and Africa’s

slave trade (e.g., Dell (2010), Nunn and Wantchekon (2011); for reviews, see

Nunn (2009, 2014)). Here we assume a historical event (treatment) to be the

protection of property rights in a specific country during the colonial era and

examine the long-run impacts on contemporary individual income.4

To identify the causal effects, researchers may estimate something like the

following regression equation under linearity and constant treatment effect

assumptions:

Yij = α + ρDj +X
′

ijβ + Z
′

jγ + ϵij, (1)

where Yij is the income of individual i in region j; Dj is the treatment vari-

able, which takes the value 1 if individual i lives in region j where property

rights were protected during the colonial era and 0 otherwise; Xij is a vec-

tor of relevant individual characteristics; Zj is a vector of relevant regional

characteristics; ρ is the parameter of interest.
4See, e.g., Acemoglu et al. (2005) for the importance of the protection of property rights

for economic development. While some studies with aggregated data use historical events
as instruments for the determinants of current domestic institutions (e.g., Acemoglu et al.
(2001)), we consider the direct impacts of a historical event on contemporary individual
outcomes. For convenience, we assume no missing values on the income and other relevant
variables.
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A. The Standard Approach B. An Alternative Approach

Figure 1: Two Approaches to Causal Inference for Historical Persistence

One major concern about the identification of ρ is the endogeneity of

the protection of property rights, namely, that the exogenous assumption,

ϵij ⊥ Dj|Xij, Zj, may not hold. Existing studies address such endogeneity

problems on the variable of interest through quasi-experimental designs (e.g.,

instrumental variable strategies, regression discontinuity designs) with a lim-

ited subsample, which may satisfy the assumption.

Another concern is obtaining a valid inference. Since the variable of inter-

est, Dj, varies only at the regional level, not the individual level, researchers

may be concerned that the failure to account for the presence of common

group errors generates estimated standard errors dramatically biased down-

ward (Moulton (1986)). To correct the standard errors, researchers may use

cluster-robust standard errors for inference, allowing for arbitrary correlation

among the errors, ϵij, within each region.

B. Remarks on the Standard Approach

The standard approach, however, faces some fundamental problems. We illus-

trate the problems in Figure 1A, which depicts the time frame for the evalu-

ation. Unlike the evaluation of standard social programs such as job training
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(e.g., LaLonde (1986)), the evaluation of historical events involves a long time

span, the duration of which often exceeds several hundred years (i.e., easily

exceeds a human’s life expectancy). This innate distinctive feature can lead

to the following conceptual and econometric issues.

Population. First, population is defined for contemporary individual

units (not those having been directly exposed to the treatments, unlike the

evaluation of standard social programs). In this context, since all individual

units (denoted by N) emerge after the treatments, their existence is potentially

affected by the treatments (and subsequent various factors such as interme-

diate variables or mediators, most of which are unobserved to researchers).

Specifically, the distribution of the population (and samples drawn from the

population) can be affected by the treatments. Thus, the choice of individual

units as causal units generally introduces post-treatment bias (detailed below).

Covariate Selection. Second, covariate selection in empirical works is

often guided by relevant economic theories and relevant previous research

findings (e.g., Cameron and Trivedi (2005)). Such covariate selection, how-

ever, does not always apply in this context. This is because the variables

selected for covariates in other studies are often post-treatment variables for

which the adjustments generally introduce post-treatment bias (Rosenbaum

(1984) or “bad control” (Angrist and Pischke (2009)); historical impacts often

go beyond the scope of the relevant economic theories and empirical stud-

ies. In equation (1), the variables of individual characteristics, Xij, are post-

treatment variables. The variables of regional characteristics, Zj, may include

not only pre-treatment variables, Zpre
j , but also post-treatment variables, Zpost

j .

The adjustments for Xij and Zpost
j in the regression generally introduce post-

treatment bias.

SUTVA. Third, since the treatment assignment varies at the cluster (re-
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gional) level, we require two additional assumptions regarding SUTVA: (1)

no interference between clusters and (2) intact clusters (Hong and Rauden-

bush (2006)). In this context, the validity of the latter assumption may be

of concern. For example, some individuals in a control (treatment) region

might actually have been born in a treatment (control) region, spent some

time there, and then migrated to the control (treatment) region. In this case,

the assumption of no multiple versions of treatment may be violated. Also,

potential outcomes of an individual might be affected by others with different

versions of treatment through social interactions.

Inference. Fourth, since the existence of contemporary individual units

can be affected by the treatments, the nature of dependence within regions

(within-cluster correlation) can also be affected by the treatments. Thus, the

estimated cluster-robust standard errors can be affected by the treatments.

C. The Identification Problems

This subsection more formally considers the identification problems in using

microdata of individuals to identify the causal effects of history on their out-

comes. Here we only consider the problems for our choice of individual units

as causal units. We do not consider the problems for our adjustments for

post-treatment variables. This is because the latter problem has long been

recognized and discussed in the existing literature (e.g., Rosenbaum (1984),

Wooldridge (2005), Angrist and Pischke (2009), Elwert and Winship (2014),

Acharya et al. (2016), Montgomery et al. (2017)) but the former has not. For

simplicity, we assume that no pre-treatment variables are recorded.

First, in the causal inference, to avoid having an ill-defined population

(discussed above), we specify a larger population consisting of all potential in-

dividuals (i.e., superpopulation, denoted by M), each of whom can potentially
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exist at the time of the “follow-up survey” (depicted in Figure 1A). Its distri-

bution is not affected by the treatments (or the mediators). Thus, it is feasible

to apply the potential outcomes framework to those potential individuals.

In this case, an ideal experiment (hypothetical one) would be that all these

potential individuals (superpopulation) are randomly assigned to the treat-

ment or control group and that all of them are actually observed at the time

of the follow-up survey. We let Yij(Dj) denote the potential income of poten-

tial individual i in region j given Dj. The parameter of our interest is the

average treatment effect (ATE) for the superpopulation,

τ = E[Yij(1)− Yij(0)] = E[Yij(1)]− E[Yij(0)].

However, what we can actually observe is quite different, as follows. Let

Sij(Dj) denote the potential outcome for the existence of potential individual

i in region j given Dj;5 for example, Sij(1) = 1 (Sij(0) = 1) implies that

potential individual i in region j would actually exist when assigned treatment

(control) while Sij(1) = 0 (Sij(0) = 0) implies that the individual would not.

Then, what we actually observe is the average observed difference between

individuals who actually existed in the treatment and control groups,

△̂ = E[Y obs
ij |Sobs

ij = 1, Dj = 1]− E[Y obs
ij |Sobs

ij = 1, Dj = 0].

Here again we use the superscript “obs” to distinguish between potential out-

comes, which are not always observed, and the observed outcome.

We note that this comparison is problematic if the treatments affect the ex-

istence of potential individuals. For example, if a historical event significantly

affected the survival of ancestors in such a way that poor, less educated, or

5To keep the notation simple, we do not explicitly specify the mediators. Here we assume
that SUTVA holds.
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low-ability people or people in poor health were more likely to die, then the

observed and unobserved characteristics of contemporary individuals (i.e., the

descendants of survivors) that may affect the outcomes of interest can sys-

tematically differ between the treatment and control groups. Importantly,

this sample selection problem (e.g., Heckman (1979)) can arise even when the

historical event is randomized (at the regional level).

To identify the ATE based on a finite sample of observed individuals, we

would require the assumption that the historical event is completely random-

ized (at the contemporary individual level):

(Yij(1), Yij(0), Sij(1), Sij(0)) ⊥ Dj.

This assumption implies that the historical event has no systematic effect on

the existence of potential individuals. However, in reality, whether or not

each individual exists does depend on his or her treatment assignment and/or

subsequent various factors; we cannot always define Yij(1) and Yij(0) for all

potential individuals.

To see more details about this, let us follow the idea of the principal strat-

ification approach (Frangakis and Rubin (2002)), which allows us to classify

the individuals who actually existed (Sobs
ij = 1) into the following six groups

according to the joint values of the two potential existence indicators:

• EE = {i : Sij(1) = Sij(0) = 1}, those who would exist regardless of

their treatment assignment; both Yij(1) and Yij(0) are defined in R (the

set of real numbers);

• EN = {i : Sij(1) = 1 and Sij(0) = 0}, those who would exist if as-

signed treatment but would not exist if assigned control; Yij(1) ∈ R and

Yij(0) = ∗;6
6For Sij(Dj) = 0, we define the outcome as “∗,” following the notation used in the
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• ?N = {i : Sij(1) = 1 or 0 and Sij(0) = 0}, those who may or may not ex-

ist depending on subsequent situations (mediators) when assigned treat-

ment (they would not exist if assigned control); Yij(1) ∈ R or Yij(1) = ∗

and Yij(0) = ∗;

• NE = {i : Sij(1) = 0 and Sij(0) = 1}, those who would exist if as-

signed control but would not exist if assigned treatment; Yij(1) = ∗ and

Yij(0) ∈ R;

• N? = {i : Sij(1) = 0 and Sij(0) = 1 or 0}, those who may or may

not exist depending on subsequent situations (mediators) when assigned

control (they would not exist if assigned treatment); Yij(1) = ∗ and

Yij(0) ∈ R or Yij(0) = ∗;

• ?? = {i : Sij(1) = 1 or 0 and Sij(0) = 1 or 0}, those who may or may

not exist depending on subsequent situations (mediators) under both

treatment arms; Yij(1) ∈ R or Yij(1) = ∗ and Yij(0) ∈ R or Yij(0) = ∗.

Because principal strata are not affected by treatment assignment (although

defined by a post-treatment variable), it is possible to identify the causal effects

within each stratum. However, because causal effects are defined as compar-

isons of potential outcomes on a common set of units (e.g., Rubin (1974, 2005)),

the individual-level causal effect is well defined on R only for the “EE” group.

In reality, we cannot directly observe the principal strata for the individuals

because we cannot observe both Sij(1) and Sij(0) at the same time. We

can only observe the following two groups based on the observed treatment

assignment and the observed existence indicator (OBS(Dj, Sobs
ij )):

• OBS(1, 1) = {i : Dj = 1, Sobs
ij = 1}, those who existed in the treatment

group;
truncation-by-death literature (e.g., Zhang and Rubin (2003)).
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• OBS(0, 1) = {i : Dj = 0, Sobs
ij = 1}, those who existed in the control

group.

Each individual is observed to fall into one of the two groups but also belongs to

an unobserved principal stratum. Their relationship is summarized in Table 1.

Table 1: Observed Data Pattern and Unobserved Principal Strata

OBS(Dj, Sobs
ij ) Dj Sobs

ij Y obs
ij Unobserved Principal Strata

OBS(1, 1) 1 1 ∈ R EE,EN, ?N, ??
OBS(0, 1) 0 1 ∈ R EE,NE,N?, ??

Table 1 reveals that OBS(1, 1) and OBS(0, 1) consist of a mixture of

the EE, EN, ?N, ?? groups and the EE, NE, N?, ?? groups, respectively;

these two groups involve different combinations of principal strata, suggesting

that a comparison of the two outcomes is not an “apples-to-apples” compar-

ison. Therefore, the average observed difference, E[Y obs
ij |Sobs

ij = 1, Dj = 1] −

E[Y obs
ij |Sobs

ij = 1, Dj = 0], is not the average causal effects, E[Yij(1)]−E[Yij(0)].

To compare the outcomes for a common set of groups, which is a causal

inference, one can assume that each individual would always exist regardless

of his or her treatment assignment: Sij(Dj) = 1 for all Dj. This existence

assumption reduces the six principal strata only to EE and thus allows us

to identify the causal effects for the EE group, where both Yij(1) and Yij(0)

are well defined in R. This assumption would also require that all poten-

tial individuals always exist. Thus, in this case, the population is identical

to the superpopulation and its distribution is not affected by the treatment

assignment (or mediators).

D. An Alternative Approach

The assumptions discussed above to justify the causal inference for historical
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persistence with microdata cannot be empirically examined (even partially)

regarding their validity. To avoid imposing such untenable assumptions, as a

simple alternative approach, it might be better to make the causal inference

with clusters or groups (i.e., regions), rather than individual units. This is

because, in many cases, the requirements of the Rubin causal model are met:

(1) The clusters or groups stably exist throughout a specified time frame and

(2) the action of treatments and the measurement of outcomes take place on

a common unit.7 Although we are required to change the causal question of

interest to that at the cluster or group level, we can identify the causal effects

through a more transparent analysis, as follows.

Data Structure. Figure 1B depicts the data structure. The individual-

level data in Figure 1A are now aggregated at the cluster (regional) level. We

use Cj, where j = 1, . . . , G, to denote each cluster, the size of which is denoted

by Nj, where
∑G

j=1 Nj = N . We assume that regional-level pre-treatment

variables, Zpre
j , and post-treatment variables, Zpost

j , are available. Individual

characteristics, Xij, and outcome, Yij, are observed at the individual level. For

simplicity, we assume that all individual units (who actually existed) within

all clusters are sampled.

Essential Elements. The three essential elements of the Rubin causal

model are as follows: (1) The population of units isG clusters, U = {C1, . . . , CG},

(2) the set of treatments is Dj = {1, 0}, where Dj = 1 if cluster j protected

property rights during the colonial era and Dj = 0 if cluster j did not, and

(3) the response variable, Yj, is regional income, which is defined using the

individual-level outcome, Yij. We can also define various response variables

using other post-treatment variables in Zpost
j and Xij.

7In some cases, the formation of geographic units (e.g., state formation) may be affected
by historical events (e.g., Alesina and Spolaore (2003)).
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Assumptions. The three key assumptions (SUTVA, unconfoundedness,

and overlap) are assumed to hold. The plausibility of the unconfounded-

ness and overlap assumptions is assumed to be improved by innovative quasi-

experimental designs, as generally done in existing studies (see Nunn (2009,

2014)). Formally, the unconfoundedness assumption is described as

(
Yj(1), Yj(0)

)
⊥ Dj|Zpre

j .

The overlap assumption is given as

0 < Pr(Dj = 1|Zpre
j ) < 1.

Identification. Under the three assumptions, the conditional average

treatment effect, E[Yj(1)− Yj(0)|Zpre
j ], can be identified as follows:

E[Yj(1)− Yj(0)|Zpre
j ] = E[Yj(1)|Zpre

j ]− E[Yj(0)|Zpre
j ]

= E[Yj(1)|Zpre
j , Dj = 1]− E[Yj(0)|Zpre

j , Dj = 0]

= E[Y obs
j |Zpre

j , Dj = 1]− E[Y obs
j |Zpre

j , Dj = 0].

Estimation. For simplicity, we suppose that the treatment effect is con-

stant and the outcome is linear in Dj and Zpre
j , where Zpre

j is a K-dimensional

column vector. Provided G > K + 2, we estimate the following regression

equation to identify the average treatment effect:

Yj = α + ρDj + Zpre′

j γ + ϵj, where Yj =

∑Nj

i=1 Yij

Nj
. (2)

Here we consider the group average, Yj, as the dependent variable. The uncon-

foundedness assumption implies that the exogenous assumption, ϵj ⊥ Dj|Zpre
j ,

holds and the clusters are assumed to be independent of each other. Under the

assumptions, the unweighted between-groups estimator consistently estimates

the average treatment effect.
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Here let us touch on the difference between this approach and that pro-

posed in Donald and Lang (2007). Both approaches estimate between-groups

estimators despite individual-level data being available, specifically, when an

outcome variable varies among individual units and the variable of interest

varies only at the cluster level. The two approaches have different motiva-

tions. Our motivation is simple: The population of our interest is clusters or

groups, not individual units. In contrast, their motivation is to obtain a valid

inference in the context of cluster sampling with a small number of clusters, as

is typically the case for difference-in-differences estimation. Their population

of interest is still individual units, not clusters or groups. They are moti-

vated by the cluster-robust inference being valid when the number of clusters

is large (Hansen (2007)) but not when it is small. To solve the inference prob-

lem, they propose estimating the between-groups estimator (see Donald and

Lang (2007), Wooldridge (2010, Chapter 20) for details).

III. An Empirical Example

This section provides an empirical example based on the alternative approach

as well as the standard one using the influential Dell (2010) paper, which fol-

lows the potential outcomes framework for studying historical persistence at

the micro level. Dell examines the long-run impacts of the mita, an extensive

forced mining labor system the Spanish government instituted in Peru and Bo-

livia between 1573 and 1812, on contemporary individual outcomes. Focusing

on a sharp change in the mita boundary, she uses a regression discontinuity

(RD) approach to examine the historical persistence.8 Although she also ex-

amines the underlying mechanisms, we focus on estimation of the causal effects

8See, e.g., Imbens and Lemieux (2008), Lee and Lemieux (2010) for a description of
regression discontinuity designs using the potential outcomes framework.
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of the mita on current living standards (equivalent household consumption in

2001 and the prevalence of stunting among children aged 6-9 in 2005).

Estimation. We additionally estimate the following regression equation:

cdb = α + γmitad + X
′

dβ + f(geographic locationd) + φb + ϵdb,

where cdb =

∑Nd
i=1 cidb
Nd

. (3)

In this estimation, unlike Dell’s (2010) approach, we use clusters (districts)

as the causal units. The population of our interest is districts, not individ-

ual units: Our interest is in the causal effects of the mita on current living

standards for districts, not individuals. The clusters are assumed to meet the

requirements of the Rubin causal model.

Nd denotes the number of individual units in district d. cdb is the mean

outcome for district d along segment b of the mita boundary. mitad is an

indicator variable equal to 1 if district d contributed to the mita and 0 other-

wise. Xd is a vector of covariates that includes elevation and slope for district

d. f(geographic locationd) is the RD polynomial, which controls for smooth

functions of geographic location. φb is a set of boundary segment fixed effects.

The descriptive statistics are presented in Appendix Table A1; see Dell (2010)

for detailed data information.

Assumptions. The first key identifying assumption in the RD approach

is that all relevant factors are continuous at the mita boundary. Based on

Dell’s careful work in checking the validity of the assumption (see Dell (2010,

Section 3.2)), we assume that the smoothness assumption holds.9 The second

key identifying assumption is that the functional form of the regression model

is correct. Because she considers various functional forms regarding the RD

9Although Dell uses individuals as causal units, she considers the validity of the smooth-
ness assumption for district-level pre-treatment variables.
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polynomial, we simply follow her three specifications: (1) cubic polynomial in

latitude and longitude, (2) cubic polynomial in distance to Potośı (km), and

(3) cubic polynomial in distance to the mita boundary (km).

An additional assumption to validate the RD design is no selective sorting

around the mita boundary. Since we use geographic units (clusters) as causal

units, it is plausible to assume that the no-manipulation assumption holds.

If we consider this assumption from the individual-unit point of view, the

assumption is relevant to the individual units having been directly exposed

to the treatments, not the contemporary individual units. For that reason,

Dell (2010), using contemporary individual units as causal units, provides an

unusual discussion regarding the validity of the assumption,10 which is not

generally found in the standard regression discontinuity design literature (e.g.,

Imbens and Lemieux (2008), Lee and Lemieux (2010)).

Results. Table 2 reports the estimated impacts of the mita on equiva-

lent household consumption (panel A) and prevalence of stunting in children

aged 6-9 (panel B). We report the estimates based on individual-level data

in columns 1-3 and district-level data in columns 4-6. Panels A/B-1, -2, and

-3 report the estimates based on the three different specifications mentioned

above. In the former estimation, based on our discussions above, to justify

the causal inference, we simply assume that the population is identical to the

superpopulation: Potential individuals always existed.

10“(A)n additional assumption often employed in RD is no selective sorting across the
treatment threshold. This would be violated if a direct mita effect provoked substantial out-
migration of relatively productive individuals, leading to a larger indirect effect. Because
this assumption may not be fully reasonable, I do not emphasize it. Rather, I explore
the possibility of migration as an interesting channel of persistence, to the extent that the
data permit.” (Dell (2010, p. 1876)). This implies that the assumption of intact clusters
regarding SUTVA might be violated, although it seems that migration was low.
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Table 2: Impacts of the Mita on Living Standards

A. Log Equivalent Household Consumption (2001)
Units: Households Districts

< 100 km < 75 km < 50 km < 100 km < 75 km < 50 km
Sample within: of Bound. of Bound. of Bound. of Bound. of Bound. of Bound.

(1) (2) (3) (4) (5) (6)
A-1. Cubic Polynomial in Latitude and Longitude

Mita -0.282 -0.217 -0.335 -0.166 -0.115 -0.192
(0.201) (0.210) (0.220) (0.196) (0.217) (0.236)

R-squared 0.059 0.059 0.068 0.391 0.370 0.413
A-2. Cubic Polynomial in Distance to Potośı

Mita -0.337*** -0.308*** -0.330*** -0.339*** -0.300*** -0.318***
(0.088) (0.102) (0.098) (0.092) (0.102) (0.103)

R-squared 0.046 0.035 0.045 0.276 0.214 0.283
A-3. Cubic Polynomial in Distance to Mita Boundary

Mita -0.278*** -0.232** -0.225** -0.295*** -0.230** -0.223**
(0.079) (0.090) (0.093) (0.089) (0.098) (0.102)

R-squared 0.044 0.041 0.038 0.277 0.249 0.194
Clusters 71 60 52 71 60 52
Observations 1,478 1,161 1,013 71 60 52

B. Children Aged 6-9 Having Stunted Growth (2005)
Units: Children Districts

B-1. Cubic Polynomial in Latitude and Longitude
Mita 0.070 0.084* 0.087* -0.012 -0.008 -0.021

(0.043) (0.046) (0.048) (0.025) (0.027) (0.029)
R-squared 0.051 0.020 0.017 0.388 0.298 0.211

B-2. Cubic Polynomial in Distance to Potośı
Mita 0.080*** 0.078*** 0.078*** 0.046*** 0.031* 0.025

(0.021) (0.022) (0.024) (0.016) (0.016) (0.018)
R-squared 0.049 0.017 0.013 0.330 0.261 0.156

B-3. Cubic Polynomial in Distance to Mita Boundary
Mita 0.073*** 0.061*** 0.064*** 0.047*** 0.025* 0.021

(0.023) (0.022) (0.023) (0.015) (0.015) (0.018)
R-squared 0.040 0.015 0.013 0.293 0.236 0.147
Clusters 289 239 185 289 239 185
Observations 158,848 115,761 100,446 289 239 185

Notes: The table reports ordinary least squares (OLS) estimates where the unit of obser-
vation is the household (child) in columns 1-3 and the district in columns 4-6. Robust
standard errors, adjusted for clustering by district, are reported in parentheses in columns
1-3 and robust standard errors are reported in parentheses in columns 4-6. The dependent
variable in panel A is log equivalent household consumption in columns 1-3 and the district
mean of log equivalent household consumption in columns 4-6. The dependent variable in
panel B is an indicator variable equal to 1 if the child has stunted growth and 0 otherwise
in columns 1-3 and the district mean of children aged 6-9 having stunted growth in columns
4-6. Mita is an indicator variable equal to 1 if the (household’s/child’s) district contributed
to the mita and 0 otherwise. Panel A/B-1 includes a cubic polynomial in the latitude and
longitude of the observation’s district capital. Panel A/B-2 includes a cubic polynomial
in Euclidean distance (km) from the observation’s district capital to Potośı. Panel A/B-3
includes a cubic polynomial in Euclidean distance (km) to the nearest mita boundary. All
regressions include controls for elevation, slope, and boundary segment fixed effects. The
sample in columns 1 and 4 includes observations whose district capitals are located within
100 km of the mita; this threshold is reduced to 75 km in columns 2 and 5 and 50 km in
columns 3 and 6. *** = Significant at the 1% level. ** = Significant at the 5% level. * =
Significant at the 10% level.
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The main findings are summarized as follows. First, the estimates in

columns 1-3 in panel A differ slightly from those in Dell (2010) (columns

1-3 of Table 2). This is because we avoid adjusting for demographic variables

(the number of infants, children, and adults in the household), which are post-

treatment variables. However, because these variables are little affected by the

mita (not reported),11 the two results are quite similar in regard to the mag-

nitude of the impacts and the level of statistical significance. We also perform

the same exercises for the district-level regressions and find similar results,12

implying that the adverse impacts of the mita are not driven by its potential

effects on the post-treatment variables.

Second, the estimated impacts of the mita on the equivalent household con-

sumption are similar in columns 1-3 and 4-6 (panel A). However, the estimated

impacts of the mita on the prevalence of stunting in children differ between

columns 1-3 and 4-6 (panel B). Unlike Dell’s results, we find positive impacts

for the specification of a cubic polynomial in latitude and longitude; these im-

pacts are, however, not statistically significant. In addition, although negative

impacts are found for the specifications of a cubic polynomial in distance to

Potośı and the mita boundary, the estimated impacts become smaller when

the sample is limited to that closer to the mita boundary. Also, the significant

impacts vanish when the sample is limited to that within 50 km of the mita

boundary. These results imply that more conservative discussions regarding

the mita impacts might be needed because the untenable assumptions imposed

in the analyses might be violated.

Although the population of interest as well as the units of analysis differ

11Significant impacts are found only for the number of children in the specification of a
cubic polynomial in latitude and longitude. The results are available from the author upon
request.

12The results are available from the author upon request.
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between the estimations based on individual-level data and aggregated data,

we touch on the reasons why the estimated impacts of the mita are similar

in panel A, but different in panel B. First, we note that the two estimators

are identical when all clusters have the same number of observations (see,

e.g., Donald and Lang (2007) and Wooldridge (2010, Chapter 20) for related

discussions). Given this, the following two facts mainly cause the different

results: (1) The number of individual units is relatively similar in panel A, but

quite different in panel B and (2) the covariate distribution for the specification

of a cubic polynomial in latitude and longitude is sensitive to the difference in

group size, while that for the specifications of a cubic polynomial in distance

to Potośı and the mita boundary is not (see Appendix Table A1).

IV. Concluding Remarks

In this paper, we have raised issues inherent in the causal inference for histor-

ical persistence with microdata following the potential outcomes framework.

When microdata are available, it is tempting to directly use such microdata

for the analysis to utilize the information most effectively. However, in this

distinct context, the choice of individual units as causal units generally intro-

duces bias because their existence is potentially affected by the treatments.

Also, covariate selection guided by relevant economic theories and empirical

findings often contains post-treatment variables, which may introduce another

potential bias. Using an empirical example, we have discussed a simple alter-

native approach to avoid such problems that makes the causal inference with

clusters or groups, not individual units. The approach is coherent with the

Rubin causal model.

The discussion presented here is relevant not only to the causal inference

for historical persistence with microdata, but also to the long-run impacts
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of treatments if the existence of the causal units of interest is potentially

affected by treatments more generally (e.g., across generations). We believe

our discussion can help in designing/analyzing future relevant observational

and experimental studies/data and lead to more transparent research. We will

also development a general framework to address such causal inference at the

micro level in future work.
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For Online Publication

Table A1: Descriptive Statistics

A. Log Equivalent Household Consumption (2001)
Units: Households Districts

< 100 km < 75 km < 50 km < 100 km < 75 km < 50 km
Sample Within: of Bound. of Bound. of Bound. of Bound. of Bound. of Bound.

Variable (1) (2) (3) (4) (5) (6)
Number of households 20.817 19.350 19.481

(12.312) (9.251) (9.373)
Log equivalent 5.877 5.799 5.848 5.839 5.805 5.848
household consumption (1.010) (0.915) (0.855) (0.401) (0.362) (0.358)
Mita 0.752 0.716 0.674 0.718 0.700 0.654

(0.432) (0.451) (0.469) (0.453) (0.462) (0.480)
Elevation 3.841 3.824 3.827 3.792 3.786 3.794

(0.378) (0.389) (0.383) (0.408) (0.400) (0.391)
Slope 7.130 8.319 8.548 7.784 8.615 8.742

(4.124) (3.699) (3.649) (4.106) (3.771) (3.798)
Longitude -0.335 0.046 0.106 -0.105 0.123 0.132

(1.203) (0.921) (0.777) (1.110) (0.885) (0.767)
Latitude -0.054 -0.340 -0.412 -0.202 -0.393 -0.447

(0.820) (0.638) (0.578) (0.765) (0.621) (0.586)
Longitude2 1.559 0.849 0.614 1.226 0.785 0.594

(1.742) (0.900) (0.491) (1.473) (0.822) (0.510)
Latitude2 0.675 0.522 0.503 0.618 0.534 0.537

(0.533) (0.368) (0.335) (0.488) (0.387) (0.363)
Longitude*Latitude -0.617 -0.252 -0.113 -0.435 -0.242 -0.133

(1.071) (0.689) (0.527) (0.883) (0.652) (0.535)
Longitude3 -1.956 -0.142 0.188 -1.008 0.046 0.221

(4.497) (2.041) (0.836) (3.724) (1.794) (0.839)
Latitude3 0.163 -0.200 -0.284 -0.015 -0.242 -0.309

(1.004) (0.584) (0.479) (0.893) (0.600) (0.535)
Longitude2*Latitude 0.900 -0.012 -0.188 0.385 -0.096 -0.195

(2.407) (1.147) (0.519) (1.874) (1.030) (0.540)
Longitude*Latitude2 -0.451 0.014 0.114 -0.156 0.063 0.122

(1.384) (0.703) (0.416) (1.062) (0.659) (0.441)
Distance to Potośı 8.964 9.484 9.587 9.262 9.586 9.632

(1.450) (1.036) (0.814) (1.300) (0.983) (0.815)
Distance to Potośı2 82.453 91.017 92.570 87.450 92.836 93.430

(24.911) (18.779) (15.357) (22.829) (18.004) (15.372)
Distance to Potośı3 775.093 882.584 899.934 839.133 907.258 912.200

(328.449) (259.657) (218.859) (307.124) (251.264) (219.335)
Distance to mita bound. 0.406 0.281 0.233 0.380 0.290 0.243

(0.286) (0.174) (0.126) (0.263) (0.170) (0.127)
Distance to mita bound.2 0.247 0.109 0.070 0.213 0.113 0.075

(0.288) (0.122) (0.065) (0.262) (0.118) (0.066)
Distance to mita bound.3 0.181 0.051 0.024 0.147 0.052 0.026

(0.264) (0.079) (0.031) (0.239) (0.075) (0.031)
Bound. segm. dummy I 0.086 0.078 0.083 0.099 0.083 0.077

(0.280) (0.269) (0.276) (0.300) (0.279) (0.269)
Bound. segm. dummy II 0.289 0.138 0.100 0.197 0.100 0.077

(0.453) (0.345) (0.300) (0.401) (0.303) (0.269)
Bound. segm. dummy III 0.384 0.477 0.484 0.451 0.517 0.519

(0.487) (0.500) (0.500) (0.501) (0.504) (0.505)

Observations 1,478 1,161 1,013 71 60 52
Continue
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Table A1: Descriptive Statistics

B. Children Aged 6-9 Having Stunted Growth (2005)
Units: Children Aged 6-9 Districts

Sample < 100 km < 75 km < 50 km < 100 km < 75 km < 50 km
Within: of Bound. of Bound. of Bound. of Bound. of Bound. of Bound.

Variable (1) (2) (3) (4) (5) (6)
Number of children 549.647 484.356 542.951

(1365.381) (678.517) (736.596)
Children having 0.346 0.391 0.403 0.380 0.392 0.412
stunted growth (0.476) (0.488) (0.491) (0.125) (0.120) (0.116)
Mita 0.780 0.707 0.684 0.702 0.678 0.665

(0.414) (0.455) (0.465) (0.458) (0.468) (0.473)
Elevation 3.911 3.908 3.896 3.864 3.899 3.908

(0.388) (0.427) (0.411) (0.482) (0.475) (0.447)
Slope 6.414 7.724 7.890 8.021 8.210 8.245

(3.917) (3.489) (3.478) (3.800) (3.585) (3.591)
Longitude -0.547 -0.149 -0.080 0.014 0.009 -0.003

(1.225) (0.903) (0.798) (1.077) (0.921) (0.808)
Latitude 0.017 -0.312 -0.418 0.029 -0.037 -0.154

(0.822) (0.636) (0.552) (0.763) (0.744) (0.688)
Longitude2 1.800 0.837 0.643 1.157 0.845 0.650

(1.846) (0.880) (0.600) (1.266) (0.902) (0.639)
Latitude2 0.676 0.501 0.479 0.580 0.553 0.494

(0.584) (0.441) (0.393) (0.538) (0.499) (0.405)
Longitude*Latitude -0.694 -0.187 -0.089 -0.285 -0.168 -0.018

(1.159) (0.662) (0.549) (0.822) (0.732) (0.604)
Longitude3 -2.451 -0.280 0.007 -0.372 -0.151 -0.033

(4.842) (1.898) (1.097) (3.160) (1.993) (1.206)
Latitude3 0.230 -0.187 -0.301 0.213 0.117 -0.063

(1.050) (0.677) (0.527) (0.901) (0.831) (0.648)
Longitude2*Latitude 1.186 -0.013 -0.172 0.310 0.175 0.059

(2.606) (1.047) (0.636) (1.529) (1.158) (0.734)
Longitude*Latitude2 -0.657 -0.037 0.039 -0.136 -0.080 0.016

(1.491) (0.698) (0.499) (0.926) (0.806) (0.569)
Distance to Potośı 8.735 9.301 9.434 9.204 9.247 9.320

(1.486) (1.022) (0.858) (1.201) (1.035) (0.847)
Distance to Potośı2 78.513 87.559 89.738 86.156 86.566 87.580

(25.386) (18.606) (16.060) (21.373) (18.555) (15.410)
Distance to Potośı3 723.445 833.387 860.361 818.516 819.519 829.211

(333.028) (257.969) (227.659) (290.890) (253.693) (213.211)
Distance to mita bound. 0.447 0.292 0.244 0.417 0.326 0.243

(0.299) (0.183) (0.141) (0.273) (0.202) (0.144)
Distance to mita bound.2 0.290 0.119 0.079 0.248 0.147 0.079

(0.302) (0.127) (0.076) (0.263) (0.146) (0.074)
Distance to mita bound.3 0.218 0.057 0.030 0.173 0.076 0.029

(0.277) (0.083) (0.037) (0.238) (0.099) (0.035)
Bound. segm. dummy I 0.097 0.109 0.109 0.225 0.230 0.249

(0.296) (0.311) (0.311) (0.418) (0.422) (0.433)
Bound. segm. dummy II 0.342 0.156 0.093 0.225 0.192 0.119

(0.475) (0.362) (0.290) (0.418) (0.395) (0.325)
Bound. segm. dummy III 0.278 0.348 0.369 0.329 0.310 0.297

(0.448) (0.476) (0.483) (0.471) (0.463) (0.458)

Observations 158,848 115,761 100,446 289 239 185

Notes: Panels A and B present the means and standard deviations for the variables used
in the regressions with equivalent household consumption and children aged 6-9 having
stunted growth, the latter of which are reported in parentheses. The unit of observation is
the household (child) in columns 1-3 and the district in columns 4-6. The sample in columns
1 and 4 includes observations from those whose district capitals are located within 100 km
of the mita; this threshold is reduced to 75 km in columns 2 and 5 and 50 km in columns 3
and 6.
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