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Efficiency and strategy-proofness in object allocation

problems with payments: Externalities with income

effects∗

Hiroki Shinozaki†

November 6, 2023

Abstract

We consider the problem of allocating an object to n ≥ 2 agents with payments.

We allow agents to have preferences that exhibit (allocative) externalities and are

not necessarily quasi-linear. Thus, agents care not only their own consumption of

the object but also other agents’ consumption or the owner keeping the object. A

preference of an agent is identity-independent if he does not care who else (except

for the owner) wins the object at the payment of zero. We show that if (i) all the

agents have identity-independent preferences, and (ii) at least n − 1 agents have

preferences that exhibit positive externalities, then the generalized pivotal rule is the

only rule satisfying efficiency , weak individual rationality , no subsidy for losers, and

strategy-proofness. We also establish that if we relax one of the assumptions (i) and

(ii), then no rule satisfies the four properties. Further, we find the two environments

where some agents may have identity-dependent preferences, others have quasi-linear

preferences exhibiting positive externaliteis, and there is a rule satisfying the four

properties. Overall, our results suggest the importance of identity-independence and

positive externalities in a non-quasi-linear environment with externalities for the

existence of a rule satisfying the four properties.
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1 Introduction

1.1 Purpose

Auctions are widely perceived as an effective method of allocating scarce resources to

agents efficiently. Indeed, one of the announced goals of many important auctions such as

spectrum auctions is to allocate the resources efficiently. The following two features are

pervasive in real-life auctions.

(i) Allocative externalities . Bidders who participate in an auction often care not only

whether they win the goods but also who else does, i.e., they often experience (allocative)

externalities (Jehiel and Moldovanu, 2003).1 In many auctions of importance such as spec-

trum auctions and auctions for privatization of publicly owned companies, bidders engage

in economic activities using the auctioned goods after the auctions. In such an auction, the

result of the auction will affect the market structure, and thus the bidders will experience

externalities. The sign of externalities depends on a situation. For example, in a spectrum

auction, if a group company wins a license, then a company will experience a positive

externality, while if a hostile company does, then it will do a negative externality.2 Agents

may also experience externalities because of concerns of fairness. The large literature on

experimental economics suggests that some real-life people have preferences that are altru-

istic, philanthropic, or inequity-averse, which will cause positive externaliteis, while others

have spiteful preferences, which will cause negative externalities (Fehr and Schmidt, 2003).

(ii) Non-quasi-linear preferences . The assumption of quasi-linear preferences makes the

analysis simple and tractable, but is plausible only when a payment that each bidder makes

1Indeed, in the 3G spectrum auctions in the U.K. and Germany, “a major investment bank estimated
license value as a function of the various possible market constellations” (Jehield and Mpldovanu, 2003),
which reflects the fact that the bidders in the 3G auctions in these countries had preferences that exhibit
externalities.

2Jehiel and Moldovanu (2000) illustrate via an example that when bidders engage in the Cournot
competition in the downstream market, if an inventor sells a patent for a cost-reducing technical innovation,
then they will experience negative externalities. They also illustrate that if a firm in a Cournot competition
is up for sale through a second-price auction, then the other firms will experience positive externalities.
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is so small that both budget constraints and income effects are negligible. In many auctions

of importance, however, bidders often make large-scale payments, so that neither budget

constraints nor income effects is negligible. Indeed, in the 3G spectrum auction in the

U.K., the average winning bid was 7.41 billion euros (Jehiel and Moldovanu, 2003), which

is not negligible for a firm.

We consider the problem of allocating a single object to n ≥ 2 agents with payments.

An object allocation specifies who receives the object. It is possible that the owner of

the object keeps it. An agent not only cares whether he receives the object but also who

else does (or the owner keeps it). Thus, a (consumption) bundle of an agent is a pair

consisting of an object allocation and a payment. Each agent has a preference over the set

of bundles that may exhibit externalities and is not necessarily quasi-linear. We assume

desirability of own consumption which means that at a given payment, an agent prefers

the own consumption the most. Such an assumption is plausible in auction environments

which we regard one of the most important applications of this paper.

An allocation is a pair of an object allocation and a profile of payments. An (allocation)

rule is a function from a set of preference profiles (a domain) to the set of allocations.

It satisfies efficiency if no other allocation makes some agent better off without making

any agent worse off, or decreasing the revenue of the owner. It satisfies weak individual

rationality if each agent finds his outcome bundle of the rule at least as desirable as a

bundle consisting of some object allocation and the payment of zero. This property is

weaker than standard individual rationality which requires no agent get worse off than

the bundle consisting of the owner keeping the object and the payment of zero, and is a

minimal requirement of a participation constraint in an environment with externalities. A

rule satisfies no subsidy for losers if the payment of an agent who does not win the object is

non-negative. It satisfies strategy-proofness if no agent ever benefits from misrepresenting

his preferences. We regard these four properties as basic desiderata.

It is already known that there is a rule satisfying the four properties if agents have quasi-

linear preferences (Vickrey, 1961, Clarke, 1971, Groves, 1973), or if they have preferences

exhibiting no externality (Saitoh and Serizawa, 2008; Sakai, 2008). The purpose of this

paper is to study the effect of externalieis coupled with non-quasi-linear preferences on the

class of rules satisfying the four properties. To be more specific, we attempt to identity
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(i) the domains on which there is a rule satisfying the four properties and (ii) the class of

rules satisfying the four properties when such a rules exists.

1.2 Main results

A preference of an agent exhibits positive externalities if at each payment, he finds the

consumption of the object by other agents at least as desirable as the owner keeping it.

Negative externalities are defined analogously. A preference is (partly) identity-independent

if at the payment of zero, he is indifferent among the consumption of the object by other

agents, i.e., he does not care the identity of the other agents (except for the owner) at the

payments of zero. Note that identity-independence impose a restriction only the bundles

with the payments of zero, and is a weak property.

We propose a new extension of the pivotal rule (Vickrey, 1961; Clarke, 1971; Groves,

1971) for quasi-linear preferences to non-quasi-linear environments. A generalized pivotal

rule applies the pivotal rule to the valuations at the bundles consisting of the worst object

allocation among the agents (i.e., without the owner) and the payments of zero. Note

that non-quasi-linearity implies that the valuation depends on a bundle. Thus, the choice

of the reference bundles to which an extension of the pivotal rule to a non-quasi-linear

environment is evaluated matters for the properties of the rule. The generalized pivotal rule

is different from the previous extensions of the pivotal rule such as the generalized Vickrey

rule (Saitoh and Serizawa, 2008; Sakai, 2008) and the extended pivotal rule (Hashimoto

and Saitoh, 2010) in the choice of the reference bundles.3

First, we study an environment where all the agents have identity-independent pref-

erences. Identity-independence makes the situation somewhat close to an environment

without externalities, and is a good place to begin the analysis.4 We establishes that if all

the agents have identity-independent preferences, and at least n−1 agents have preferences

that exhibit positive externalities, then the generalized pivotal rule is the only rule satis-

fying efficiency, weak individual rationality, no subsidy for losers, and strategy-proofness

(Theorem 1).

Once we obtain a positive result for the existence of a rule satisfying the desirable prop-

3In Section 3.1, we will discuss this point in detail.
4Some authors who take externalities into account assume conditions similar to our identity-

independence to make their analysis tractable. See, for example, Jehiel et al. (1996, 1999) for the analysis
of revenue optimal rules and Velez (2016) for the analysis of fair allocations.
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erties, it is interesting to ask whether we can we relax the assumptions while guaranteeing

the existence of such a rule. Recall that in Theorem 1, we make the two assumptions for a

positive result, i.e., (i) all the agents have identity-independent preferences, and (ii) at least

n− 1 agents have preferences exhibiting positive externalities. We show that tightness of

both the assumptions for the existence of a rule satisfying the four properties. That is, we

show that if all the agents have non-quasi-linear preferences, then once we relax one of the

assumptions, no rule satisfies the four properties (Theorems 2 and 3; see also Corollaries 3

and 4). Thus, both identity-independence and positive externalities are important for the

existence of a rule satisfying the four properties in a non-quasi-linear environment with

externalities.

Then, we move on to an environment where some agents may have identity-dependent

preferences. A lesson from our results in an identity-independent environment is that if

all the agents have non-quasi-linear preferences, then the existence of a rule satisfying

the four properties is no longer guaranteed once we relax the assumption of identity-

independence (Theorem 2). Thus, we focus on an environment where some agents have

identity-dependent preferences, while others have quasi-linear preferences. We identity two

such environments where there is a rule satisfying the four properties.

First, we establish that even if we add agents who have identity-dependent and quasi-

linear preferences that exhibit positive externalities to the environment in Theorem 1, the

generalized pivotal rule is still the only rule satisfying the four properties (Theorem 4).

Second, we consider an environment where a single agent (agent i) may have identity-

dependent and non-quasi-linear preferences, while all the other agents have identity-independent

and quasi-linear preferences that exhibit positive externalities. We propose an alternative

and novel extension of the pivotal rule to such an environment. To do so, note that when

preferences are quasi-linear, strategy-proofness of the pivotal rule implies that the pivotal

rule is equivalent to the following rule: First, an agent chooses his most preferred bundle

among the possible bundles given other agents’ preferences under a pivotal rule. Second,

the payments of the other agents are equal to that under a pivotal rule, i.e., the maximal

impacts on the other agents. We call such a rule the respect for the choice of an agent rule.

The generalized pivotal rule respecting agent i extends the pivotal rule to an environment

under consideration on the basis of the equivalence between the pivotal rule and the re-

spect for the choice of agent i rule for quasi-linear preferences. Thus, under the generalized
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pivotal rule respecting agent i, agent i first chooses the best bundle among the possible

bundles given other agents’ (quasi-linear) preferences under a pivotal rule, and then the

other agents’ payments are equal to the maximal impact on the other agents. We establish

that in an environment under consideration, the generalized pivotal rule respecting agent i

is the only rule satisfying the four properties (Theorem 5).

Finally, we show the tightness of the assumptions in the two positive results in envi-

ronments where some agents have identity-dependent preferences, while others have quasi-

linear preferences (Theorems 4 and 5). That is, we establish that if we drop one of the

assumptions in Theorem 4, then no rule satisfies the four properties (Theorem 6 and

Proposition 1; see also Corollaries 7, 8, and 9). We also establish that if we drop one the

assumptions in Theorem 5, then no rule satisfies the four properties (Corollaries 10, 11,

12, and 13).

1.3 Related literature

This paper is the first one that investigates the class of rules satisfying efficiency and

strategy-proofness together with the other desirable properties in a non-quasi-linear envi-

ronment with externalities.

There is a growing literature on object allocation problems with payments that takes

non-quasi-linear preferences into account (Saitoh and Serizawa, 2008; Sakai, 2008; Mori-

moto and Serizawa, 2015, Velez, 2016, etc.). One of the most closely related papers in

this literature are Saitoh and Serizawa (2008) and Sakai (2008), both of which establish

that in a single object model without externalities, the generalized Vickrey rule is the only

rule satisfying efficiency, (weak) individual rationality, no subsidy for losers, and strategy-

proofness.5 This paper extends their results to an environment with externalities, and in

particular, because our generalized pivotal rule coincides with their generalized Vickrey rule

in an environment without externalities, our first result (Theorem 1) implies their results as

a corollary. This paper also contributes to the literature by proposing two new extensions

of the pivotal rule to non-quasi-linear environments. In particular, the generalized pivotal

rule respecting an agent is a novel extension such that there is no counterpart in the litera-

ture to the best of our knowledge. Apart from strategy-proof rules, Velez (2016) studies the

5Note that in an environment without externalities, weak individual rationality is equivalent to indi-
vidual rationality.
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structure of the set of envy-free allocations in a model with unit-demand agents, heteroge-

neous objects, non-quasi-linear preferences, and externalities.6 His model is more general

than ours because he considers agents who care not only the other agents’ assignments

of objects but also their payments.7 Our results are logically independent from his be-

cause ours are concerned with the class of rules satisfying efficiency and strategy-proofness

together with the other desirable properties, while he investigates envy-free allocations.

The literature on object allocation problems with payments that takes externalities

into account has assumed quasi-linear preferences, and mainly focused on revenue optimal

rules (Jehiel and Moldovanu, 1996; Jehiel et al., 1996, 1999; Aseff and Chade, 2008), the

equilibrium analysis of particular auction rules (Jehiel and Moldovanu, 2000; Das Varma,

2002), or the properties of core allocations (Jehiel and Moldovanu, 1996; Jeong, 2020). This

paper is different from this literature in that we are interested in efficient and strategy-

proof rules in a non-quasi-linear environment. Note that the characterization result by

Holmström (1979) implies that on quasi-linear and convex domains with externalities, the

pivotal rule is the only rule satisfying the four properties. The results in this paper can be

regarded as endeavors to extend his result to non-quasi-linear domains with externalities.

The model with externalities can be interpreted as a public goods model with payments

if we regard the object allocations as public projects. Hashimoto and Saitoh (2010) con-

sider the two public projects model with non-quasi-linear preferences, and characterize an

extension of the pivotal rule that is different from ours by a weak property of efficiency that

they call partial efficiency, strategy-proofness, weak individual rationality, and no deficit.8

Ma et al. (2018) also study the public goods model with non-quasi-linear preferences,

and identify a maximal domain for the existence of a rule that satisfies non-dictatorship,

ontoness, weak individual rationality, no subsidy, and strategy-proofness.9 The difference

between this paper and these papers lies in domains and the properties of rules. Indeed, we

consider preferences that satisfy not only the properties of externalities such as positive or

negative externalities and identity-independence but also desirability of own consumption.

6An allocation is envy-free for a given preference profile if no agent prefers other agent’s bundle. Velez
(2016) calls an envy-free allocation a noncontestable allocation.

7Note that we study only agents with allocative externalities, i.e., agents who care only the other agents’
consumption of the object.

8A rule satisfies partial efficiency if for each quasi-linear preference profile, it selects an efficient alloca-
tion. It satisfies no deficit if the sum of payments is always non-negative.

9A rule satisfies non-dictatorship if it is not a fixed-price dictatorship rule. It satisfies ontoness if for
each public project, there is a preference profile at which the rule selects it. It satisfies no subsidy if the
payment of each agent is always non-negative.
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Such restrictions on preferences are essential for auctions with externalities, which gives

the independent importance from these papers to this paper. Further, they consider the

different sets of properties, so that our results are logically independent from theirs.

1.4 Organization

The remainder of this paper is organized as follows. In Section 2, we introduce the model.

In Section 3, we introduce the pivotal rule and its extensions to non-quasi-linear environ-

ments. In Section 4, we present the results for an identity-independent environment. In

Section 5, we give the results for an identity-dependent environment. In Section 6, we

conclude the paper. All the proofs are relegated to the Appendix.

2 Model

There are n ≥ 2 agents and a single object. The set of agents is N = {1, . . ., n}. Our

generic notation for an agent is i, j, k, l, etc. Let 0 denote the owner of the object. An

object allocation is x ∈ N ∪ {0}. Let X = N ∪ {0} denote the set of object allocations.

Our generic notation for an object allocation is x, x′, x′′, etc. The amount of a payment

made by an agent i ∈ N is denoted by ti ∈ R. We consider agents who care not only their

own consumption of the object but also the consumption of the other agents. Thus, the

consumption set of an agent i ∈ N is X × R, and his (consumption) bundle is a pair

zi = (x, ti) ∈ X × R.

2.1 Preferences

An agent i ∈ N has a complete and transitive preference Ri over X × R. Let Pi and Ii

denote the strict and indifference relations associated with Ri, respectively. We assume

that a preference Ri of an agent i ∈ N satisfies the following four properties.

Desirability of own consumption. For each x ∈ X\{i} and each ti ∈ R, (i, ti) Pi (x, ti).

Money monotonicity. For each x ∈ X and each pair ti,t
′
i ∈ R with ti < t′i, (x, ti) Pi (x, t

′
i).

Possibility of compensation. For each zi ∈ X × R and each x ∈ X, there is a pair
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ti, t
′
i ∈ R such that (x, ti) Ri zi and zi Ri (x, t

′
i).

Continuity. For each zi ∈ M × R, the upper contour set at zi, {z′i ∈ X × R : z′i Ri zi},

and the lower contour set at zi, {z′i ∈ X × R : zi Ri z
′
i}, are both closed.

Desirability of own consumption means that given a payment, an agent prefers the

own consumption of the object the most. The other three properties are standard in the

literature. Given i ∈ N , let Ri denote the class of all preferences of agent i satisfying the

above four properties. Our generic notation for a class of preferences of an agent i ∈ N

satisfying the above four properties is Ri. Thus, Ri ⊆ Ri. Because of desirability of own

consumption, a class of preferences depends on the identity of an agent.

Given a preference Ri ∈ Ri of an agent i ∈ N , a bundle zi ∈ X × R, and an object

allocation x ∈ X, we can choose a payment ti ∈ R such that (x, ti) Ii zi.
10 By money

monotonicity, such a payment is unique. The valuation of x ∈ X at zi ∈ X × R for

Ri is the unique payment ti ∈ R such that (x, ti) Ii zi. Given x ∈ X, zi ∈ X × R, and

Ri ∈ Ri, let Vi(x, zi) denote the valuation of x at zi for Ri.

Given i ∈ N and Ri ∈ Ri, let xi(Ri) ∈ X denote the worst object allocation at the pay-

ment of zero according to Ri, i.e., (x, 0) Ri (xi(Ri), 0) for each x ∈ X. Also, given i ∈ N

and Ri ∈ Ri, let xi(Ri) ∈ N denote the worst object allocation among N at the payment of

zero according toRi, i.e., (j, 0) Ri (xi(Ri), 0) for each j ∈ N . Then, (xi(Ri), 0) Ri (xi(Ri), 0),

and in general, (x(Ri), 0) is not indifferent to (xi(Ri), 0). By desirability of own consump-

tion, for each i ∈ N and each Ri ∈ Ri, xi(Ri), xi(Ri) ∈ X\{i}.

Given a preference Ri ∈ Ri of an agent i ∈ N and a set A ⊆ X × R, let B(Ri, A) =

{zi ∈ A : ∀z′i ∈ A, zi Ri z
′
i}, i.e., B(Ri, A) is the set of the best bundles according to Ri.

2.1.1 Externalities

In this section, we introduce the properties of (allocative) externalities. First, the following

property has been (implicitly) assumed in the literature without externalities (e.g., Saitoh

and Serizawa, 2008; Sakai, 2008, etc.).

Definition 1. A preference Ri ∈ Ri of an agent i ∈ N exhibits no externality if for

each x ∈ X\{i, 0} and each ti ∈ R, (x, ti) Ii (0, ti).

10The existence of such a payment is guaranteed by the possibility of compensation and continuity.
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Given i ∈ N , let R0
i denote the class of agent i’s preferences that exhibit no externality.

Then, we introduce the two properties of externalities. The first property states that

an agent prefers other agents’ consumption of the object to the owner keeping the object.

By contrast, the second property states that an agent prefers the owner keeping the object

to other agents’ consumption.

Definition 2. (i) A preference Ri ∈ Ri of an agent i ∈ N exhibits (resp. strictly)

positive externalities if for each x ∈ X\{i, 0} and each ti ∈ R, (x, ti) Ri (0, ti) (resp.

(x, ti) Pi (0, ti)).

(ii) A preference Ri ∈ Ri of an agent i ∈ N exhibits (resp. strictly) negative exter-

nalities if for each x ∈ X\{i, 0} and each ti ∈ R, (0, ti) Ri (x, ti) (resp. (0, ti) Pi (x, ti)).

Given i ∈ N , let R+
i and R++

i denote the classes of agent i’s preferences that exhibit

positive externalities and strictly positive externalities, respectively. Also, given i ∈ N , let

R−
i and R−−

i denote the classes of agent i’s preferences that exhibit negative externalities

and strictly negative externalities, respectively. For each i ∈ N , R+
i ∩ R−

i = R0
i , and so

R0
i ⊊ R+

i andR0
i ⊊ R−

i . Also, for each i ∈ N , R++
i ⊊ R+

i , R−−
i ⊊ R−

i , R++
i ∩ R−−

i = ∅,

R++
i ∩ R0

i = ∅, and R−−
i ∩ R0

i = ∅.

The next property describes an agent’s preference which does not care about the identity

of other agents at the payment of zero.

Definition 3. A preference Ri ∈ Ri of an agent i ∈ N is (partly) identity-independent

if for each pair x, x′ ∈ X\{i, 0}, (x, 0) Ii (x′, 0).

Given i ∈ N , letRI
i denote the class of agent i’s preferences that are identity-independent.

For each i ∈ N , we have R0
i ⊊ RI

i , i.e., any preference that exhibits no externality is

identity-independent. For the sake of the simplicity of notation, given i ∈ N , let R+I
i =

R+
i ∩ RI

i and R−I
i = R−

i ∩ RI
i . We say that a preference Ri of an agent i ∈ N is identity-

dependent if it is not identity-independent, i.e., Ri ̸∈ RI
i .

The above definition does not require identity-independence at each payment: for each

pair x, x′ ∈ X\{i, 0} and for each ti ∈ R, (x, ti) Ii (x′, ti). Instead, it only requires identity-

independence at the payment of zero. Thus, even if a preference Ri of an agent i ∈ N

is identity-independent, he may care about the identify of other agents at a payment

other than ti, i.e., for some pair j, k ∈ N\{i} and for some ti /∈ R\{0}, we may have

(j, ti) Pi (k, ti). Note that even if a preference Ri of an agent i ∈ N is identity-independent,

10



there is no restriction on the relationship between the owner keeping the object (i.e., x = 0)

and the consumption of another agent (i.e. x = j for some j ∈ N\{i}). Thus, identity-

independence only imposes a few restrictions on a preference.

2.1.2 Income effects

In this section, we introduce the properties of income effects. For a given pair x, x′ ∈ X

and a payment ti ∈ R, Vi(x, (x
′, ti)) − ti is the willingness to pay of x at (x′, ti) for Ri.

Note that if (x, ti) Pi (x
′, ti), then Vi(x, (x

′, ti))− ti > 0, i.e., the willingness to pay of x at

(x′, ti) for Ri is positive. First, we introduce preferences that exhibit no income effect.

Definition 4. A preference Ri ∈ Ri of an agent i ∈ N is quasi-linear if there is a (quasi-

linear) valuation function vi : X → R such that (i) vi(xi(Ri)) = 0, and (ii) for each pair

(x, ti), (x
′, t′i) ∈ X × R, (x, ti) Ri (x

′, t′i) if and only if vi(x)− ti ≥ vi(x
′)− t′i.

Given i ∈ N , let RQ
i denote the class of agent i’s quasi-linear preferences. For each

each x ∈ X and each (x′, ti) ∈ X × R, we have Vi(x, (x
′, ti))− ti = vi(x)− vi(x

′). Thus, if

Ri ∈ RQ
i , then the willingness to pay of x at (x′, ti) is independent of a preference ti. Also,

for each x ∈ X, we have Vi(x, (xi(Ri), 0)) = vi(x).

Next, we introduce the positive and negative income effects.

Definition 5. (i) A preference Ri of an agent i ∈ N exhibits positive income ef-

fects if for each pair x, x′ ∈ X, each ti ∈ R, and each δ ∈ R++, (x, ti) Pi (x
′, ti) implies

Vi(x, (x
′, ti − δ))− (ti − δ) > Vi(x, (x

′, ti))− ti.

(ii) A preference Ri of an agent i ∈ N exhibits negative income effects if for each pair

x, x′ ∈ X, each ti ∈ R, and each δ ∈ R++, (x, ti) Pi (x
′, ti) implies 0 < Vi(x, (x

′, ti − δ))−

(ti − δ) < Vi(x, (x
′, ti))− ti.

Although we do not explicitly take an agent’s income into account, the payment of

zero can be regarded as his initial income. Thus, a payment corresponds to an agent’s

(relative) income. The positive income effects mean that when a payment decreases (i.e.,

when an income increases), the willingness to pay of a preferable object allocation increases,

i.e., a preferable object allocation gets more preferable. By contrast, the negative income

effects mean that when a payment decreases, the willingness to pay of a preferable object

allocation decreases.
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Given i ∈ N , let RPIE
i denote the class of agent i’s preferences that exhibit posi-

tive income effects. Also, given i ∈ N , let RNIE
i denote the class of agent i’s prefer-

ences that exhibit negative income effects. For each i ∈ N , we have RPIE
i ∩ RNIE

i = ∅,

RPIE
i ∩ RQ

i = ∅, and RNIE
i ∩ RQ

i = ∅.

2.2 Allocations and rules

A (feasible) allocation is an (n + 1)-tuple z = (x, t) = (x, t1, . . ., tn) ∈ X × Rn, where

t = (t1, . . ., tn) is the profile of payments associated with z.

A domain is RN = ×i∈NRi. Given N ′ ⊆ N , let RN ′ = ×i∈N ′Ri and R−N ′ =

×i∈N\N ′Ri. Given a distinct pair i, j ∈ N , let Ri,j = R{i,j}, R−i = R−{i}, and R−i,j =

R−{i,j}. A preference profile is an n-tuple R = (R1, . . ., Rn) ∈ RN . Given R ∈ RN and

N ′ ⊆ N , let RN ′ = (Ri)i∈N ′ ∈ RN ′ and R−N ′ = (Ri)i∈N\N ′ ∈ R−N ′ . Given R ∈ RN and a

distinct pair i, j ∈ N , let Ri,j = R{i,j}, R−i = R−{i}, and R−i,j = R−{i,j}.

Recall thatR+
i is the class of agent i’s preferences that exhibit positive externalities. We

employ the notation R+
N to indicate the domain where the preferences of each agent exhibit

positive externalities, i.e., R+
N = ×i∈NR+

i . We will apply the parallel notations to indicate

the domains where the preferences of each agent satisfy the corresponding properties, e.g.,

RPIE
N = ×i∈NRPIE

i , RI
N = ×i∈NRI

i , etc. Given N ′ ⊆ N and a pair i, j ∈ N , we will also

employ the notations R+
N ′ , RPIE

N ′ , R+
i,j, R+

−N ′ , R+
−i, , and R+

−i,j, etc.

In all of our results, we require a domain be rich in the following sense. A domain RN is

rich if RN ⊇ R0
N ∩ RQ

N . That is, a domain is said to be rich if it includes all quasi-linear

preference profiles at which the preferences of each agent exhibit no externality. Since

almost all domains of interest are rich, our requirement of richness is natural.

An (allocation) rule on RN is a function f : RN → X × Rn. With a slight abuse of

notation, we may write f = (x, t), where x : RN → X and t : RN → Rn are the object

allocation and the payment rules associated with f , respectively. Agent i’s outcome bundle

of a rule f at a preference profile R ∈ RN is fi(R) = (x(R), ti(R)), where x(R) and ti(R)

are the object allocation and the payment made by agent i for R under f , respectively.

We introduce the properties of rules. Given R ∈ RN , an allocation z = (x, t) ∈ X × Rn

is (Pareto-)efficient for R ∈ RN if there is no z′ = (x′, t′) ∈ X × Rn such that (i)

for each i ∈ N , z′i Ri zi, (ii)
∑

i∈N t′i ≥
∑

i∈N ti, and (iii) for some i ∈ N , z′i Pi zi, or∑
i∈N t′i >

∑
i∈N ti. The next remark states an allocation z = (x, t) is efficient for a given

12



preference profile if and only if the object allocation x associated with z maximizes the

sum of valuations at z.

Remark 1. Let R ∈ RN . An allocation z = (x, t) ∈ Z is efficient for R if and only if

x ∈ arg max
x′∈X

∑
i∈N

Vi(x
′, zi).

The first property requires that a rule should select an efficient allocation for each

preference profile.

Efficiency. For each R ∈ RN , f(R) is efficient for R.

Next, we introduce the two properties of participation constraints. The second property

requires that each agent should find his outcome bundle of a rule at least as desirable as

the bundle (0, 0).

Individual rationality. For each R ∈ RN and each i ∈ N , fi(R) Ri (0, 0).

Individual rationality corresponds to a participation constraint in an environment with-

out externalities. In such an environment, an agent i ∈ N is indifferent between (0, 0) and

(x, 0) for each x ∈ N\{i}, and thus the bundle (0, 0) represents an outside option. In

an environment with externalities, however, even if an agent chooses not to participate

in a rule, he is concerned with who receives the object (or the owner keeps it), and so

individual rationality may be demanding as a property of a participation constraint. The

third property is a minimal property of a participation constraint in an environment with

externalities, which requires that each agent should find his outcome bundle of a rule at

least as desirable as the bundle (x, 0) for some x ∈ X instead of the bundle (0, 0).

Weak individual rationality. For each R ∈ RN and each i ∈ N , fi(R) Ri (xi(Ri), 0).

Clearly, individual rationality implies weak individual rationality.

The fourth property requires that if an agent does not receive the object (i.e., if he is

a “loser”), then his payment should be nonnegative.

13



No subsidy for losers. For each R ∈ RN and each i ∈ N , if x(R) ̸= i, then ti(R) ≥ 0.

Note that no subsidy for losers is a natural extension of the property with the same

name in a model without externalities to a model with externalities.

The last property is a dominant strategy incentive compatibility, which requires that

no agent ever benefit from misrepresenting his preferences.

Strategy-proofness. For eachR ∈ RN , each i ∈ N , and eachR′
i ∈ Ri, fi(R) Ri fi(R

′
i, R−i).

3 The pivotal rule and its extensions

In this section, we introduce two new extensions of the pivotal rule (Vickrey, 1961; Clarke,

1971; Groves. 1973) to non-quasi-linear environments.

The pivotal rule is defined for quasi-linear preferences. Under the pivotal rule, the

outcome object allocation maximizes the sum of quasi-linear valuations, and the outcome

payment of each agent is equivalent to the maximal impact on the other agents.

Definition 6. A rule f = (x, t) on RN ⊆ RQ
N is a pivotal rule if for each R ∈ RN , the

following conditions hold.

(i) We have

x(R) ∈ arg max
x∈X

∑
i∈N

vi(x).

(ii) For each i ∈ N ,

ti(R) = max
x∈X

∑
j∈N\{i}

vj(x)−
∑

j∈N\{i}

vj(x(R)).

It is well-known that on a convex and rich quasi-linear domain, the pivotal rule is

the only rule satisfying efficiency, weak individual rationality, no subsidy for losers, and

strategy-proofness.11

11A domain RN ⊆ RQ
N is convex if for each i ∈ N , each pair Ri, R

′
i ∈ Ri, and each λ ∈ [0, 1], a quasi-

linear preference Rλ
i ∈ RQ

i with a (quasi-linear) valuation function vλi (x) = λvi(x) + (1− λ)v′i(x) belongs
to Ri.
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Fact 1 (Holmström, 1979). Let RN ⊆ RQ
N be convex and rich. A rule on RN satisfies

efficiency, weak individual rationality, no subsidy for losers, and strategy-proofness if and

only if it is a pivotal rule.

Note that almost all quasi-linear domains of interest are convex and rich. Indeed, RQ
N ,

R0
N ∩ RQ

N , R
+
N ∩ RQ

N , R
−
N ∩ RQ

N , RI
N ∩ RQ

N , R
+I
N ∩ RQ

N , and R−I
N ∩ RQ

N are all convex

and rich. Thus, we can apply Fact 1 to these domains.12

3.1 The generalized pivotal rule

We introduce our first new extension of the pivotal rule to a non-quasi-linear environment.

Notice that the pivotal rule is defined by means of the quasi-linear valuation functions.

Recall that if a preference Ri of an agent i is quasi-linear, then for each x ∈ X and each

(x′, ti) ∈ X × R, Vi(x, (x
′, ti)) − ti = vi(x

′) − vi(x). Thus, when defining the pivotal rule

for quasi-linear preferences, we do not have to care about the reference bundles at which

the rule evaluates the valuations of agents. If a preference is not quasi-linear, however, the

valuation may vary depending on a bundle. Thus, when extending the pivotal rule to a

non-quasi-linear environment, the choice of reference bundles matters. The next extension

of the pivotal rule chooses (xi(Ri), 0)i∈N as the reference bundles.

Definition 7. A rule f = (x, t) on RN is a generalized pivotal rule if for each R ∈ RN ,

the following conditions hold.

(i) We have

x(R) ∈ arg max
x∈X

∑
i∈N

Vi(x, (xi(Ri), 0)).

(ii) For each i ∈ N ,

ti(R) = max
x∈X

∑
j∈N\{i}

Vj(x, (xj(Rj), 0))−
∑

j∈N\{i}

Vj(x(R), (xj(Rj), 0)).

Note that the generalized pivotal rule coincides with the pivotal rule on RN ⊆ RQ
N .

The previous literature has proposed several extensions of the pivotal rule to non-quasi-

linear environments. The difference between the generalized pivotal rule and the previous

12Note that both R++
N ∩ RQ

N and R−−
N ∩ RQ

N are convex but not rich, and we cannot apply Fact 1 to
these domains. However, it is straightforward to see that the parallel characterization results hold on these
domains.

15



ones lies in the choice of reference bundles. As we will show in the next sections, the

choice of reference bundles will have a significant effect on the properties of a rule. Here,

we compare the generalized pivotal rule with the generalized Vickrey rule (Saitoh and

Serizawa, 2008; Sakai, 2008) and the extended pivotal rule (Hashimoto and Saitoh, 2010).

The generalized Vickrey rule has played a central role in the literature on object alloca-

tion problems with payments for non-quasi-linear preferences without externalities (Saitoh

and Serizawa, 2008; Sakai, 2008, Malik and Mishra, 2021; Kazumura, 2022, Shinozaki et

al., 2022). It is an extension of the pivotal rule with the reference bundles (0, 0)i∈N . It

is different from the generalized pivotal rule unless for each i ∈ N , (xi(Ri), 0) Ii (0, 0) (as

in the case of no externality). If preferences exhibit no externality, then it is the only

rule satisfying efficiency, (weak) individual rationality, no subsidy for losers, and strategy-

proofness.

Fact 2 (Saitoh and Serizawa, 2008; Sakai, 2008). Let RN be rich and satisfy RN ⊆ R0
N .

A rule on RN satisfies efficiency, weak individual rationality, no subsidy for losers, and

strategy-proofness.

The extended pivotal rule was introduced in the model with two public projects (Hashimoto

and Saitoh, 2010).13 It is an extension of the pivotal rule with the reference bundles

(xi(Ri), 0)i∈N . It is different from the generalized pivotal rule unless for each i ∈ N ,

(xi(Ri), 0) Ii (xi(Ri), 0) (as in the case of negative externaities).

3.2 The generalized pivotal rule respecting an agent

We introduce our second extension of the pivotal rule to an environment where a single

agent may have identity-dependent and quasi-linear preferences, and all the other agents

have identity-independent and quasi-linear preferences that exhibit positive externalities.

Note that strategy-proofness of the pivotal rule implies that under the rule, the payment

of each agent depends only on the outcome object allocation chosen by the rule and other

agents’ preferences.14 Given an agent i ∈ N , if agents have quasi-linear preferences, then

the pivotal rule is equivalent to the following rule:

13Note that the object allocation model with externalities can be interpreted as the public goods model
if we regard an object allocation as a public project.

14See Lemma 3 and the discussion in the two paragraphs just before Lemma 3 in Appendix A for the
detail.
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Step 1. Let R ∈ RQ
N be given. Agent i faces the possible payment for R−i under a pivotal

rule for each possible object allocation for R−i. He chooses the best bundle among the

pairs of object allocations and the payments that he faces, and receives it.

Step 2. Note that the outcome object allocation is already determined in Step 1. For

each j ∈ N\{i}, the payment of agent j is equivalent to that under a pivotal rue.

We call the above rule the respect for the choice of agent i rule. The next remark

states that if preferences are quasi-linear, then the respect for the choice of each agent rule

produces the equivalent outcome to a pivotal rule. Thus, it does not matter to the rule

who makes the choice in the first step.

Remark 2. Let R ∈ RQ
N and i ∈ N . Then, the outcome of the respect for the choice of

agent i rule coincides with that of agent j rule (except for ties), both of which are equivalent

to the outcome of a pivotal rule.

If at least n − 1 agents have preferences that exhibit positive externalities, then be-

cause of desirability of own consumption of an agent who may not have a preference that

exhibits positive externalities and positive externalities of other agents’ preferences, 0 is

never chosen under an efficient allocation, and so under a pivotal rule.15 Thus, if agents

have such preferences, then 0 is excluded when an agent i ∈ N makes a choice in Step 1

of the respect for the choice of agent i rule.

To illustrate that the outcome of a pivotal rule is equivalent to that of the respect for

the choice of an agent i ∈ N rule, we consider the following example.

Example 1. Let n = 4. Let R1 ∈ RQ
1 be such that v1(1) = 12, v1(2) = 8, v1(3) = 4,

and v1(4) = v1(0) = 3. Let R2 ∈ RQ
2 be such that v2(2) = 3, and v2(1) = v2(3) =

v2(4) = v2(0) = 0. Let R3 ∈ RQ
3 be such that v3(3) = 10, v3(1) = v3(2) = v3(4) = 0,

and v3(0) = −2. Let R4 ∈ RQ
4 be such that v4(4) = 6, v4(1) = v4(2) = v4(3) = 0, and

v4(0) = −1. Note that R−1 ∈ R+
−1, and so a pivotal rule never chooses 0 for R.

We identity the outcome of the respect for the choice of agent 1 rule for R. Given

R−1, the possible payments of agent 1 under a pivotal rule are as follows. When the

rule chooses x = 1, agent 1 pays maxx∈X
∑

i∈N\{1} vi(x) −
∑

i∈N\{1} vi(1) = v3(3) = 10.

15See Lemma 1 for the formal statement of this claim.
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When the rule chooses x = 2, agent 1 pays v3(3) − v2(2) = 7. When the rule choose

x = 3, agent 1 pays v3(3)− v3(3) = 0. When the rule choose x = 4, agent 1 pays v3(3)−

v4(4) = 4. Then, it is straightforward to check that agent 1 prefers (3, 0) the most among

{(1, 10), (2, 7), (3, 0), (4, 4)}, i.e., B(R1, {(1, 10), (2, 7), (3, 0), (4, 4)}) = {(3, 0)}. Thus, in

Step 1 of the rule, agent 1 receives (3, 0). By Step 2, the payments of the other agents are

equal to that under a pivotal rule. Thus, agent 2 pays 0, agent 3 pays maxx∈X
∑

i∈N\{3} vi(x)−∑
i∈N\{3} vi(3) = v1(1) − v1(3) = 8, and agent 4 pays 0. Thus, the outcome allocation of

the rule is z = (x, t1, t2, t3, t4) = (3, 0, 0, 8, 0), which is equivalent to the outcome allocation

of a pivotal rule for R.

On the basis of the observation that the pivotal rule is equivalent to the respect for the

choice of an agent rule for quasi-linear preferences, we introduce an extension of a general-

ized pivotal rule to an environment where a single agent may have identity-dependent and

quasi-linear preferences, and the other agents have identity-independent and quasi-linear

preferences that exhibit positive externalities.

We introduce some notations. Given i ∈ N and Ri ∈ Ri, let ⪰i be the binary relation

on N\{i} such that for each pair j, k ∈ N\{i}, j ⪰i k if and only if (j, 0) Ri (k, 0). Since

Ri is complete and transitive, ⪰i is also complete and transitive. Also, since we may have

(j, 0) Ii (k, 0) for some distinct pair j, k ∈ N\{i}, ⪰i is not necessarily antisymmetric. Let

≻i denote the asymmetric part of ⪰i. Given a distinct pair i, j ∈ N and R−i ∈ RQ
−i, let

N−i,j(R−j) =
{
k ∈ N\{i, j} : vk(k) = max

l∈N\{i,j}
vl(l),∀l ∈ N\{i, j} with vl(l) = vk(k), k ⪰i l

}
.

Thus, N−i,j(R−j) is the set of agents other than agents i and j with the highest order

according to ⪰i among the agents who have the highest (quasi-linear) valuation of own

consumption among all the agents other than agents i and j.

Now, we are ready to introduce our second extension of the pivotal rule.

Definition 8. Given i ∈ N , let RN be such that R−i ⊆ R+I
−i ∩ RQ

−i. A rule f on RN

is a generalized pivotal rule respecting agent i if for each R ∈ RN , the following

conditions hold.

(i) We have

fi(R) ∈ B
(
Ri,

{(
j, max

k∈N\{i}
vk(k)− vj(j)

)
: j ∈ N\{i}

} ∪ {(
i, max

j∈N\{i}
vj(j)

)})
.
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(ii) For each j ∈ N\{i}, if x(R) = j, then there is k ∈ N−i,j(R−j) such that (ii-i) if k ⪰i j,

then

tj(R) = max
{
τj,i(R−j), max

l∈N\{i,j}:l⪰ij
τj,l(R−j)

}
,

and (ii-ii) if x(R) = j and j ≻i k, then

tj(R) = max
{
τj,i(R−j), max

l∈N\{i,j}:l⪰ik
τj,l(R−j)

}
,

where

τj,i(R−j) =


Vi(i, (j, 0)) if k ⪰i j or vk(k) ≤ Vi(i, (j, 0))

vk(k)− Vi(j, (i, vk(k))) if j ≻i k and Vi(i, (j, 0)) ≤ vk(k) ≤ Vi(i, (k, 0)),

vk(k)− Vi(j, (k, 0)) if j ≻i k and vk(k) ≥ Vi(i, (k, 0)),

for each l ∈ N\{i, j} with l ⪰i j,

τj,l(R−j) =

vl(l) + Vi(l, (j, 0)) if vk(k)− vl(l) ≤ Vi(l, (j, 0)),

vk(k)− Vi(j, (l, vk(k)− vl(l))), if vk(k)− vl(l) ≥ Vi(l, (j, 0)),

and for each l ∈ N\{i, j} with j ≻i l,

τj,l(R−j) = vk(k)− Vi(j, (l, vk(k)− vl(l))).

For each j ∈ N\{i}, if x(R) ̸= j, then tj(R) = 0.

The first condition of the definition corresponds to Step 1 of the respect for the choice

of agent i rule, which states that agent i faces the possible payments under a pivotal rule,

and chooses his best object allocation under the payments.16 Note that by R−i ⊆ R+
−i, a

pivotal rule never chooses 0, and so 0 is excluded from the choice of agent i in the above

definition. Note that for each l ∈ N\{j}, τj,l(R−j) corresponds to the impact of agent

j’s consumption of the object from agent l’s consumption on the other agents. Because

of non-quasi-linear preferences, such impacts depend on bundles. The second condition

corresponds to Step 2 of the respect for the choice of agent i rule, which states that the

16Note that for each R−i ∈ R+I
−i ∩ RQ

−i, if a pivotal rule chooses x = 1, then the payment of agent i is
maxx∈X

∑
j∈N\{i} vj(x) = maxj∈N\{i} vj(j), and if it chooses x = j for some j ∈ N\{i}, then the payment

of agent i is maxx∈X

∑
k∈N\{i} vk(x)−

∑
k∈N\{i} vk(j) = maxk∈N\{i} vk(k)− vj(j).

19



payment of each agent j ∈ N\{i} is equal to the maximum impact of agent j’s consumption

on the other agents. If preferences are quasi-linear, then such impacts do not depend on

bundles, and so the generalized pivotal rule respecting agent i coincides with the pivotal

rule on RN ⊆ RQ
N . Also, if RN ⊆ RI

N , i.e., if preferences are identity-independent, then

the generalized pivotal rule respecting agent i coincides with the generalized pivotal rule.

The definition of the rule does not depend on the choice of an agent k ∈ N−i,j(R−j) in

the second condition above. Indeed, except for ties, for any choice of an agent k ∈ N−i,j(R−j),

the rule produces the same outcome.17 The definition of the rule, however, depends on the

choice of agent i ∈ N in contrast to Remark 1.

To illustrate the generalized pivotal rule respecting a single agent, we consider the

following example which applies the same preference profile as in Example 1 to the rule,

and verify that if preferences are quasi-linear, then the outcome of the rule is indeed

equivalent to that of the pivotal rule (or the respect for the choice of agent i rule).

Example 2. Let n = 4. Let RN be such that R1 = RQ
1 and R−1 = R+I

−1 ∩ RQ
−1. Let

f = (x, t) be a generalized pivotal rule respecting agent 1 on RN . Consider the same

preference profile R = (R1, R2, R3, R4) as in Example 1. Recall that we have argued in

Example 1 that B(R1, {(1, 10), (2, 7), (3, 0), (4, 4)}) = {(3, 0)}. Thus, f1(R) = (3, 0). By

x(R) = 3, for each i ∈ N\{1, 3}, ti(R) = 0. We identify the payment of agent 3 on the basis

of the definition of the rule. Note that 2 ≻1 3 ≻1 4. By v4(4) > v2(2), N−1,3(R−3) = {4}.

By R1 ∈ RQ
1 , V1(1, (3, 0)) = v1(1) − v1(3) = 8. Thus, by v4(4) = 6 < 8 = V1(1, (3, 0)),

τ3,1(R−3) = V1(1, (3, 0)) = 8. By R1 ∈ RQ
1 , V1(2, (3, 0)) = v1(2) − v1(3) = 4. Thus,

by v4(4) − v2(2) = 3 < 4 = V1(2, (3, 0)), τ3,2(R−3) = v2(2) + V1(2, (3, 0)) = 7. By

R1 ∈ RQ
1 , we have V1(3, (4, v4(4) − v4(4))) = V1(3, (4, 0)) = v1(3) − v1(4) = 4. Thus,

τ3,4(R−3) = v4(4) − V1(3, (4, v4(4) − v4(4))) = 6 − 4 = 2. Thus, by 3 ≻1 4, t3(R) =

max{τ3,1(R−3),maxi∈N\{1,3}:i⪰14 τ3,i(R−3)} = max{8, 7, 2} = 8. In summary, f(R) =

(x(R), t1(R), t2(R), t3(R), t4(R)) = (3, 0, 0, 8, 0). By Example 1, this coincides with an

outcome of a pivotal rule for R (and that of a respect for the choice of agent 1 rule).

17To see this, let k, l ∈ N−i,j(R−j), and τkj,i(R−j) and τ lj,i(R−j) denote the functions in the defini-
tion of the generalized pivotal rule respecting agent i defined on the basis of k and l, respectively. By
k, l ∈ N−i,j(R−j), vk(k) = vl(l). Also, k ⪰i l and l ⪰i k. Thus, τ

k
j,i(R−j) = τ lj,i(R−j), and so the general-

ized pivotal rule respecting agent i does not depend on the choice of an agent in Ni,j(R−i).
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4 Identity-independent preferences

In this section, we study an environment where all the agents have identity-independent

preferences.

4.1 Characterization

The next result states that if at least n − 1 agents have preferences that exhibit positive

externalities, then the generalized pivotal rule is the only rule satisfying efficiency, weak

individual rationality, no subsidy for losers, and strategy-proofness.

Theorem 1. Let i ∈ N . Let RN be rich and satisfy RN ⊆ RI
i × R+I

−i . A rule on RN sat-

isfies efficiency, weak individual rationality, no subsidy for losers, and strategy-proofness

if and only if it is a generalized pivotal rule.

One of the two key observations behind Theorem 1 is that if at least n − 1 agents

have preferences that exhibit positive externalities, then the owner never keeps the object

under an efficient allocation.18 The other one is that under identity-independence, each

agent i ∈ N finds the bundle (j, 0) indifferent to his reference bundle (xi(Ri), 0) for each

j ∈ N\{i}, so that his reference bundle is essentially unique. These two observations to-

gether imply that the behavior of the generalized pivotal rule is similar to the generalized

Vickrey rule in an environment without externalities. Recall Fact 2 that in an environ-

ment without externalities, the generalize Vickrey rule is the only rule satisfying the four

properties. Theorem 1 shows that a parallel characterization result extends to an environ-

ment under consideration. We note, however, that Theorem 1 is not a trivial extension of

Fact 2 because identity-independence only imposes a restriction on the payment of zero,

and so how externalities at the payments of other than zero affect not only the properties

of the generalized pivotal rule but also the class of rules satisfying the four properties is

not obvious a priori.

For a rich domain RN such that RN ⊆ RI
i × R+I

−i and an agent j ∈ N , (xj(Rj), 0) is

indifferent neither to (0, 0) nor to (xj(Rj), 0) according to Rj in general. Thus, on such a

domain, a generalized pivotal rule is equivalent neither to a generalized Vickrey rule (Saitoh

and Serizawa, 2008; Sakai, 2008) nor to an extended pivotal rule (Hashimoto and Saitoh,

18See Lemma 1 in Appendix A for the formal statement of and proof. Note that we already discussed
this point when introducing the generalized pivotal rule respecting agent i in Section 3.2.
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2010) in general.19 Theorem 1 shows that the generalized pivotal rule stands out as the

unique rule satisfying the four properties instead of the other extensions of the pivotal rule

to non-quasi-linear environments, highlighting the importance of the choice of reference

bundles in a non-quasi-linear environment.

We discuss the implications from Theorem 1. First, it implies that if all the agents have

identity-independent preferences that exhibit positive externalities, then the generalized

pivotal rule is the only rule satisfying the four properties.

Corollary 1. Let RN be rich and satisfy RN ⊆ R+I
N . A rule on RN satisfies efficiency,

weak individual rationality, no subsidy for losers, and strategy-proofness if and only if it

is a generalized pivotal rule.

It also implies that under identity-independence, if one agent has preferences that

exhibit negative externalities, and all the other agents have those that exhibit positive

externalities, then the generalized pivotal rule is the only rule satisfying the four properties.

Corollary 2. Let i ∈ N . Let RN be rich and satisfy RN ⊆ R−I
i × R+I

−i . A rule on

RN satisfies efficiency, weak individual rationality, no subsidy for losers, and strategy-

proofness if and only if it is a generalized pivotal rule.

4.2 Tightness

Theorem 1 implies that for a given i ∈ N , there is a rule satisfying efficiency, weak indi-

vidual rationality, no subsidy for losers, and strategy-proofness on the domain RI
i × R+I

−i .

Thus, in Theorem 1, we make the two assumptions for a positive result, i.e., (i) all the

agents have identity-independent preferences, and (ii) at least n − 1 agents have prefer-

ences that exhibit positive externalities. In this section, we ask whether we can relax the

assumptions while guaranteeing the existence of a rule satisfying the four properties. Then,

we show the tightness of the assumptions in Theorem 1, i.e., show that if we relax one of

the assumptions, then no rule satisfies the four properties.

To show the tightness of the first assumption in Theorem 1 that all the agents have

identity-independent preferences, we show the next result. It states that if a class of pref-

erences of an agent includes at least one identity-dependent preference that exhibits either

positive or negative income effects, and a domain includes all non-quasi-linear preference

19Recall the discussion in Section 3.1 after the definition of the generalized pivotal rule.
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profiles at which the preferences of each agent exhibit no externality, then no rule satisfies

the four properties.

Theorem 2. Let i ∈ N . Let Ri ∈ (RPIE
i ∪ RNIE

i )\RI
i . Let RN be such that Ri ∈ Ri and

RN ⊇ R0
N . No rule on RN satisfies efficiency, weak individual rationality, no subsidy for

losers, and strategy-proofness.

Theorem 2 implies that if we add at least one arbitrary identity-dependent preference

of an agent that exhibits either positive or negative externalities to the domain RI
i × R+I

−i ,

then no rule satisfies the four properties. Thus, we cannot relax the assumption of identity-

independence in Theorem 1.

Corollary 3. Let i, j ∈ N be a pair.20 Let Rj ∈ (RPIE
j ∪ RNIE

j )\RI
j . Let RN satisfy

Rj ∈ Rj, and RN ⊇ RI
i × R+I

−i . No rule on RN satisfies efficiency, weak individual ra-

tionality, no subsidy for losers, and strategy-proofness.

Next, we show the tightness of the second assumption in Theorem 1 that at least n− 1

agents have preferences that exhibit positive externalities. To do so, we show the following

result which states that if an agent has at least one preference that exhibits strictly negative

externalities and either positive or negative income effects, and another agent has identity-

independent and quasi-linear preferences that exhibit negative externalities, then no rule

satisfies the four properties.

Theorem 3. Let i, j ∈ N be a distinct pair. Let Ri ∈ R−−
i ∩ (RPIE

i ∪ RNIE
i ). Let RN be

rich and satisfy Ri ∈ Ri and Rj ⊇ R−I
j ∩ RQ

j . No rule on RN satisfies efficiency, weak

individual rationality, no subsidy for losers, and strategy-proofness.

Theorem 3 implies that if we add one arbitrary preference of an agent j ∈ N\{i} that

exhibits strictly negative externalities and either positive or negative externalities to the

domain RI
i × R+I

−i , then no rule satisfies the four properties. Put differently, it implies that

if at least two agents have identity-independent preferences that do not necessarily exhibit

positive externalities , then no rule satisfies the four properties. Thus, we cannot relax the

assumption that at least n − 1 agents have preferences that exhibit positive externalities

in Theorem 1.

20Note that we allow the case where i = j.
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Corollary 4. Let i, j ∈ N be a distinct pair. Let Rj ∈ R−−
j ∩ (RPIE

j ∪ RNIE
j ). Let RN

satisfy Rj ∈ Rj, and RN ⊇ RI
i × R+I

−i . No rule on RN satisfies efficiency, weak individual

rationality, no subsidy for losers, and strategy-proofness.

Before moving on to the next section, we discuss Theorems 2 and 3. We first discuss

Theorem 2. Notice that a preference Ri in Theorem 2 may exhibit either positive or

negative externalities. Thus, as a corollary of Theorem 2, we obtain the following result.

Corollary 5. Assume n ≥ 3. Let RN be either RN = R+
N or RN = R−

N . No rule on

RN satisfies efficiency, weak individual rationality, no subsidy for losers, and strategy-

proofness.

In Theorem 2, we require a domain include all non-quasi-linear preference profiles at

which the preferences of each agent exhibit no externality, which is stronger than our

richness condition. We cannot replace this stronger richness condition by our richness

condition in Theorem 2. Indeed, we will show in Section 5.1 that if a single agent may

have identity-dependent preferences, and all the other agents have identity-independent

and quasi-linear preferences that exhibit positive externalities, then a generalized pivotal

rule respecting an agent satisfies the four properties (Theorem 5 in Section 5.1).

Next, we discuss Theorem 3. Recall Corollary 2 shows that if there is only one agent

who has preferences that exhibit negative externalities, then there is a rule satisfying the

four properties. It is interesting to ask whether there is a rule satisfying the four properties

if several agents may have preferences that exhibit negative externalities. Theorem 3 helps

us answer this question. It implies that if there are at least two agents who have identity-

independent preferences that exhibit negative externalities, and at least one such agent has

non-quasi-linear preferences, then no rule satisfies the four properties.

Corollary 6. Let i, j ∈ N be a distinct pair. Let RN be a rich domain that satisfies

Ri,j ⊇ R−I
i × (R−I

j ∩ RQ
j ). No rule on RN satisfies efficiency, weak individual rational-

ity, no subsidy for losers, and strategy-proofness.

5 Identity-dependent preferences

Next, we study an environment where some agents may have identity-dependent pref-

erences. An implication from Theorem 2 is that if all the agents have non-quasi-linear
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preferences, then a single identity-dependent preference exhibiting either positive or nega-

tive income effects leads to an impossibility result for efficiency, weak individual rationality,

no subsidy for losers, and strategy-proofness. Thus, we focus on environments where some

agents have identity-dependent preferences, while others have quasi-linear preferences.

5.1 Characterization

First, we consider an environment where some agents have identity-independent and non-

quasi-linear preferences, while others have identity-dependent and quasi-linear preferences

that exhibit positive externalities. Let NQL ⊆ N denote the set of agents who have non-

quasi-linear preferences, and QL ⊆ N those who have quasi-linear preferences. The next

result states that in such an environment, if all but one agents inNQL have preferences that

exhibit positive externalities, then the generalized pivotal rule is the only rule satisfying

the four properties. Put differently, it states that even if we add agents who have identity-

dependent and quasi-linear preferences to the environment in Theorem 1, the generalized

pivotal rule is still the only rule satisfying the four properties.

Theorem 4. Let NQL,QL ⊆ N be a pair such that NQL ∩ QL = ∅ and N = NQL ∪ QL.

Let i ∈ NQL. Let RN = RNQL × RQL be rich and satisfy RNQL ⊆ RI
i × R+I

NQL\{i} and

R+I
QL ∩ RQ

QL ⊆ RQL ⊆ R+
QL ∩ RQ

QL. A rule on RN satisfies efficiency, weak individual

rationality, no subsidy for losers, and strategy-proofness if and only if it is a generalized

pivotal rule.

Notice that in Theorem 4, we allow the case whereN = NQL orN = QL. IfN = NQL,

then Theorem 4 reduces to Theorem 1. Thus, Theorem 4 subsumes Theorem 1 as a

corollary, and so it is sufficient to provide the proof of Theorem 4 instead of Theorem 1.21

If N = QL, then all the agents have quasi-linear preferences, and the result reduces to a

characterization of the pivotal rule. However, a characterization in a case where N = QL is

still a new result because it allows non-convex domains, and so does not follow from previous

characterization results of the pivotal rule for quasi-linear preferences such as Fact 1.

Next, we consider an environment where a single agent may have identity-dependent

21We begin with the results in an environment where all the agents have identity-independent preferences
in Section 4 instead of introducing Theorem 4 first in order to make the motivations for considering
the domains in Theorems 4 and 5 clearer. Indeed, Theorem 2 tells us that we need to restrict our
attention to domains where some agents have identity-dependent preferences whereas others have quasi-
linear preferences, which makes the reason for considering the domains in Theorems 4 and 5 clearer.
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and non-quasi-linear preferences, while all the other agents have identity-independent and

quasi-linear preferences that exhibit positive externalities. The next theorem establishes

that in such an environment, the generalized pivotal rule respecting the agent who may

have identity-dependent preferences is the only rule satisfying the four properties.

Theorem 5. Let i ∈ N . Let RN be rich and satisfy RN ⊆ Ri × (RQ
−i ∩ R+I

−i ). A rule

on RN satisfies efficiency, weak individual rationality, no subsidy for losers, and strategy-

proofness if and only if it is a generalized pivotal rule respecting agent i.

Recall Remark 2 states that the respect for the choice of an agent rule is equivalent

to the pivotal rule. Recall also that for a given i ∈ N , the generalized pivotal rule re-

specting agent i extends the pivotal rule to a non-quasi-linear environment on the basis

of this equivalence. Although several extensions of the pivotal rule to non-quasi-linear

environments has been proposed such as the generalized Vickrey rule in several environ-

ments without externalities (Saitoh and Serizawa, 2008; Sakai, 2008, etc.), the minimum

price Warlasian rule in a unit-demand environment without externalities (Demange and

Gale, 1985; Morimoto and Serizawa, 2015), etc., there has been no extension similar to the

generalized pivotal rule respecting an agent. Theorem 5 is a novel characterization result

in that it shows the pivotal rule is extended to a non-quasi-linear environment in a distinct

way while keeping its uniqueness of a rule satisfying the four properties.

Theorem 4 helps us prove the “only if” of Theorem 5. The proof of the “only if” part

of Theorem 5 is divided into two steps: First, we show that the outcome bundle of agent i

under a rule f satisfying the four properties coincides with that under a generalized pivotal

rule respecting agent i. Second, we show that the payments of the other agents under the

rule f coincide with those under a generalized pivotal rule respecting agent i. Theorem 4

implies that the payment of agent i under the rule f coincides with that under a generalized

pivotal rule respecting agent i. Thus, it enables us to focus on the proof that the outcome

object allocation under the rule f coincides with that under a generalized pivotal rule

respecting agent i in the first step.22 Moreover, we will repeatedly exploit Theorem 4 in

the second step to identify the payments of agent i under the rule f .23

A byproduct of Theorem 5 is that it helps us prove the impossibility theorems (The-

orems 2, 3, and 6 in Section 5.2). Indeed, the common proof strategy underlying the

22For the detail, see Lemma 21 in Appendix C.2.
23See Lemmas 22 and 23 in Appendix C.2 for the detail.
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impossibility theorems is that we (i) first suppose for a contradiction that there is a rule

satisfying the four properties, (ii) attempt to identify the payment of an agent under the

rule when another single agent has an identity-dependent preference, and (iii) finally show

that the rule violates either efficiency or strategy-proofness at a certain preference pro-

file. We will exploit the “only if” part of Theorem 5 (in particular, Lemmas 22 and 23 in

Appendix C.2) to identify such a payment in (ii) of the proof strategy.

5.2 Tightness

In this section, we show the tightness of the assumptions in Theorems 4 and 5. To do

so, together with Theorems 2 and 3, we need to show the following two results. First,

the following theorem states that if an agent has an identity-dependent preference that

exhibits either positive or negative income effects and another agent has quasi-linear and

identity-dependent preferences that exhibit positive externalities, then no rule satisfies the

four properties.

Theorem 6. Let i, j ∈ N be a distinct pair. Let Ri ∈ (RPIE
i ∪ RNIE

i )\RI
i . Let RN be

rich and satisfy Ri ∈ Ri and Rj ⊇ R+
j ∩ RQ

j . No rule on RN satisfies efficiency, weak

individual rationality, no subsidy for losers, and strategy-proofness.

Second, the following proposition states that if an agent has identity-dependent pref-

erences that exhibit positive externalities, and another agent has identity-independent

preferences that exhibit positive externalities, then no rule satisfies the four properties.

Since its proof is essentially same as that of Theorem 2, we omit it.24

Proposition 1. Assume that n ≥ 3. Let i, j ∈ N be a distinct pair. Let RN be rich and

satisfy Ri,j ⊇ R+
i × R+I

j . No rule on RN satisfies efficiency, weak individual rationality,

no subsidy for losers, and strategy-proofness.

Recall that when establishing the tightness of Theorem 1 in Section 4.2, we show that

adding at least one preference that violates one of the assumptions in Theorem 1 to the

domain leads to an impossibility result (Corollaries 3 and 4). Such an approach is striking

because just a single preference that violates one the assumptions leads to an impossibility

24Indeed, we choose a preference Ri ∈ R+
i of agent i such that Ri ∈ RPIE

i ∪ RNIE
i , and for each

k ∈ N\{i, j}, (j, 0) Pi (k, 0). Then, we can apply the proof of Theorem 2 to such Ri, and we can derive
Proposition 1.
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result. In Theorems 4 and 5, however, we make more assumptions than Theorem 1, and

it is difficult to apply the same approach as the tightness of Theorem 1 to some of the

assumptions in Theorems 4 and 5. We instead establish the tightness of the assumptions in

Theorems 4 and 5 by showing that to drop one of the assumptions leads to an impossibility

result.

5.2.1 Tightness of Theorem 4

First, we show the tightness of the assumptions in Theorem 4. Throughout the section, let

NQL,QL ⊆ N be a pair such that NQL,QL ̸= ∅, NQL ∩ QL = ∅, and NQL ∪ QL =

N .25 Also, let i ∈ NQL. Theorem 4 implies that there is a rule satisfying efficiency,

weak individual rationality, no subsidy for losers, and strategy-proofness on the domain

RI
i × R+I

NQL\{i} × (R+
QL ∩ RQ

QL). Thus, in Theorem 4, we make the assumptions that (i)

all the agents who belong to NQL have identity-independent preferences, (ii) all but one

agents in NQL have preferences that exhibit positive externalities, and (iii) the agents who

belong to QL have identity-dependent and quasi-linear preferences that exhibit positive

externalities.

First, we show that tightness of the first assumption (i) that all the agents in NQL

have identity-independent preferences. Proposition 1 implies that if an agent in NQL has

identity-dependent preference, then no rule satisfies the four properties. Thus, we cannot

drop the first assumption (i) in Theorem 4.

Corollary 7. Assume that n ≥ 3. Let j ∈ NQL\{i}. Then, let RN be either RN =

Ri × R+I
NQL\{i} × (R+I

QL × RQ
QL) or RN = RI

i × R+
j × R+I

NQL\{i,j} × (R+I
QL × RQ

QL). No

rule on RN satisfies efficiency, weak individual rationality, no subsidy for losers, and

strategy-proofness.

Second, we show that we cannot drop the second assumption (ii) that all but one

agents in NQL have preferences that exhibit positive externalities. Theorem 3 implies

that if at least two agents have identity-independent preferences that do not necessarily

exhibit positive externalities , then no rule satisfies the four properties.

25If NQL = ∅, then N = QL, i.e., all the agents have quasi-linear preferences. In such a case, regardless
of the properties of externalities, a pivotal rule satisfies the four properties. Instead, if QL = ∅, then
NQL = N , and Theorem 4 is equivalent to Theorem 1. We have already shown the tightness of the
assumptions in Theorem 1 in Section 4.2.
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Corollary 8. Let j ∈ NQL\{i}. Let RN = RI
i,j × R+I

NQL\{i} × (R+
QL × RQ

QL). No rule

on RN satisfies efficiency, weak individual rationality, no subsidy for losers, and strategy-

proofness.

Finally, we show the tightness of the third assumption (iii) that the agents who belong

to QL have quasi-linear preferences that exhibit positive externalities. Theorem 3 implies

that if an agent in QL has quasi-linear preferences that do not necessarily exhibit positive

externalities , then no rule satisfies the four properties.

Corollary 9. Let j ∈ QL. Let RN = RI
i × R+I

NQL\{i} × RQ
j × (R+

QL\{j} ∩ RQ
QL\{j}). No

rule on RN satisfies efficiency, weak individual rationality, no subsidy for losers, and

strategy-proofness.

5.2.2 Tightness of Theorem 5

Next, we show the tightness of the assumptions in Theorem 5. Note that Theorem 5 implies

for an agent i ∈ N , there is a rule satisfying the four properties on Ri × (R+I
−i ∩ RQ

−i).

Thus, in Theorem 5, we assume that (i) there is only a single agent (agent i) who may

have identity-dependent and non-quasi-linear preferences, and (ii) the other agents have

identity-independent and quasi-linear preferences that exhibit positive externalities.

First, we show that we cannot drop the first assumption (i). Theorem 3 implies that if

at least two agents have identity-dependent and non-quasi-linear preferences, then no rule

satisfies the four properties. Thus, we cannot drop the first assumption in Theorem 5.

Corollary 10. Let i, j ∈ N be a distinct pair. Let RN = Ri,j × (R+I
−i,j ∩ RQ

−i,j). No rule

on RN satisfies efficiency, weak individual rationality, no subsidy for losers, and strategy-

proofness.

Next, we show that we cannot drop the second assumption (ii) in Theorem 5 that except

for a single agent, all the agents have identity-independent and quasi-linear preferences

that exhibit positive externalities. Notice that the second assumption consists of the three

subassumptions: (ii-i) quasi-linear preferences, (ii-ii) identity-independent preferences, and

(ii-iii) positive externalities.

First, we show that we cannot drop the assumption (ii-i). Proposition 1 implies that if

an agent has identity-dependent and non-quasi-linear preferences, and another agent has
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identity-independent and non-quasi-linear preferences that exhibit positive externalities,

then no rule satisfies the four properties.

Corollary 11. Assume that n ≥ 3. Let i, j ∈ N be a distinct pair. Then, let RN =

Ri × R+I
j × (R+I

−i,j ∩ RQ
−i,j). No rule on RN satisfies efficiency, weak individual rational-

ity, no subsidy for losers, and strategy-proofness.

Second, we show the tightness of the assumption (ii-ii). Theorem 6 implies that if

an agent has identity-dependent and non-quasi-linear preferences, and another agent has

identity-dependent and quasi-linear preferences that exhibit positive externalities, then no

rule satisfies the four properties.

Corollary 12. Assume that n ≥ 3. Let i, j ∈ N be a distinct pair. Then, let RN =

Ri × (R+
j ∩ RQ) × (R+I

−i,j ∩ RQ
−i,j). No rule on RN satisfies efficiency, weak individual

rationality, no subsidy for losers, and strategy-proofness.

Finally, Theorem 3 implies that if an agent has identity-dependent and non-quasi-linear

preferences, and another agent has identity-independent and quasi-linear preferences that

do not necessarily exhibit positive externalities , then no rule satisfies the four properties.

Thus, we cannot drop the assumption (ii-iii) in Theorem 5.

Corollary 13. Let i, j ∈ N be a distinct pair. LetRN = Ri × (RI
j ∩ RQ) × (R+I

−i,j ∩ RQ
−i,j).

No rule on RN satisfies efficiency, weak individual rationality, no subsidy for losers, and

strategy-proofness.

6 Conclusion

We have considered the problem of allocation a single object to n ≥ 2 agents with payments

who have preferences that may exhibit externalities and are not necessarily quasi-linear.

We have established that if (i) all the agents have identity-independent preferences and

(ii) at least n−1 agents have those that exhibit positive externalities, then the generalized

pivotal rule is the only rule satisfying efficiency, weak individual rationality, no subsidy for

losers, and strategy-proofness (Theorem 1). We have also shown that if we relax one of the

two assumptions (i) and (ii) in Theorem 1, no rule satisfies the four properties (Theorems 2

and 3; see also Corollaries 3 and 4). We have further found the two environments where

some agents may have identity-dependent preferences, others have quasi-linear preferences
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exhibiting positive externaliteis, and there is a rule satisfying the four properties (Theo-

rems 4 and 5). Overall, our results suggest the importance of identity-independence and

positive externalities in a non-quasi-linear environment with externalities for the existence

of a rule satisfying the four properties.

In this paper, we have focused on the problem of allocating a single object to agents

with payments. Such a simplification of the model may be helpful to emphasize the effect

of externalities coupled with non-quasi-linear preferences on the class of rules satisfying

the four properties, but may not be unrealistic in many situations. An interesting open

question is how externalies and non-quasi-linear preferences together affect the class of

rules satisfying the four properties in multi-object models (particularly with unit-demand

agents),26 and we hope that the results and the technique that we have developed in this

paper are helpful.

Appendix

A Preliminaries

In this section, we provide the lemmas that will be used throughout the proofs of the

theorems.

First, we provide the two lemmas concerning efficient allocations. The next lemma

states that if at least n− 1 agents have preferences that exhibit positive externalities, then

the owner never keeps the object under an efficient allocation.

Lemma 1. Let R ∈ RN . Let z = (x, t) ∈ X × Rn be efficient for R. Let i ∈ N . If

R−i ∈ R+
−i, then x ̸= 0.

Proof. Suppose R−i ∈ R+
−i, but x = 0. Then,

∑
j∈N

Vj(i, zj) > Vi(0, zi) +
∑

j∈N\{i}

Vj(i, zj) ≥
∑
j∈N

Vj(0, zj),

26In a multi-object model without externalities, if agents have unit-demand, then there is a rule satisfying
the four properties (Demange and Gale, 1985; Morimoto and Serizawa, 2015, etc.), while if they do
multi-demand, then typically no rule satisfies the four properties (Baisa, 2020; Malik and Mishra, 2021,
Kazumura, 2022, etc.).
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where the first inequality follows from desirability of own consumption of Ri, and the

second one from R−i ∈ R+
−i. By Remark 1, this contradicts that z is efficient for R.

The following lemma follows from Remark 1 and the fact that for each i ∈ N and each

zi = (x, ti) ∈ X × R, ti = Vi(x, zi). Thus, we omit the proof.

Lemma 2. Let i ∈ N and R ∈ RN be such that R−i ∈ RI
−i. Let z = (x, t) ∈ X × Rn be

efficient for R.

(i) If x = i, then for each j ∈ N\{i}, then (ti − Vi(j, zi)) + (tj − Vj(j, zj)) ≥ 0.

(ii) If x ∈ N\{i}, then for each j ∈ N\{i}, (ti−Vi(j, zi))+(tx−Vx(j, zx)) ≥ Vj(j, zj)− tj.

(iii) If x ∈ N\{i}, then (ti − Vi(i, zi)) + (tx − Vx(i, zx)) ≥ 0.

Next, we provide the definitions and a lemma that are related to strategy-proofness.

Given a rule f = (x, t) on RN , an agent i ∈ N , and preferences R−i ∈ R−i, let

ofi (R−i) = {zi ∈ X × R : ∃Ri ∈ Ri s.t. fi(Ri, R−i) = zi}

denote the set of available bundles of agent i for some preferences of agent i under a rule

f . Also, let

Xf
i (R−i) = {x ∈ X : ∃Ri ∈ Ri s.t. x(Ri, R−i) = x}

denote the set of available object allocations for some preference of agent i under a rule f .

If a rule f on RN is strategy-proof, then for each i ∈ N , each R−i ∈ R−i, and each

x ∈ Xf
i (R−i), there is a unique payment ti ∈ R such that (x, ti) ∈ ofi (R−i). Let t

f
i (R−i;x) ∈ R

denote the unique payment such that (x, tfi (R−i;x)) ∈ ofi (R−i). Let z
f
i (R−i;x) = (x, tfi (R−i;x)).

The following lemma states that if a rule f on RN is strategy-proof, then for each

R ∈ RN , each agent i ∈ N receives the best bundle among ofi (R−i) under the rule. Since

its proof is straightforward from strategy-proofness, we omit it.

Lemma 3. Let f be a rule on RN satisfying strategy-proofness. Let R ∈ RN and i ∈ N .

For each x ∈ Xf
i (R−i), fi(R) Ri z

f
i (R−i;x).

We provide the lemmas concerning rules satisfying efficiency, weak individual rational-

ity, no subsidy for losers, and strategy-proofness. From now until the end of this section,

let RN be rich and f be a rule on RN satisfying the four properties.
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The next lemma states that under a rule satisfying the four properties, given other

agents’ preferences, there is a quasi-linear preference of an agent that exhibits no externality

such that he obtains the object.

Lemma 4. Let i ∈ N and R−i ∈ R−i. There is Ri ∈ R0
i ∩ RQ

i such that x(Ri, R−i) = i.

Proof. Let N ′ ⊆N\{i}. For each j ∈ N ′, Bj = {zj ∈ X × R+ : zj Rj (xj(Rj), 0)} is

bounded, and by continuity of Rj, is closed. Thus, for each j ∈ N ′, Bj is compact, and

so BN ′ = ×j∈N ′Bj is also compact. Let hN ′ : BN ′ → R be a function such that for each

zN ′ = (zj)j∈N ′ ∈ BN ′ , hN ′(zN ′) = maxx∈X
∑

j∈N ′

(
Vj(x, zj) − Vj(i, zj)

)
. By continuity of

preferences RN ′ , hN ′ is a continuous function. Thus, since BN ′ is compact, hN ′(BN ′) is also

compact. Thus, we can choose Ri ∈ R0
i ∩ RQ

i such that for each nonempty N ′ ⊆N\{i}

and each (zj)j∈N ′ ∈ BN ′ , we have

vi(i) > max
x∈X

∑
j∈N ′

(
Vj(x, zj)− Vj(i, zj)

)
. (1)

We show x(R) = i. By contradiction, suppose x(R) ̸= i. There are two cases.

Suppose x(R) = 0. Then, by no subsidy for losers, for each j ∈ N\{i}, tj(R) ≥ 0. Thus,

by weak individual rationality, for each j ∈ N\{i}, fj(R) ∈ Bj, and so (fj(R))j∈N\{i} ∈ BN\{i}.

Thus, by (1), vi(i) >
∑

j∈N\{i}(Vj(0, fj(R))− Vj(i, fj(R))), which implies

∑
j∈N

(
Vj(i, fj(R))− Vj(x(R), fj(R))

)
= vi(i)−

∑
j∈N\{i}

(
Vj(0, fj(R))− Vj(i, fj(R))

)
> 0,

where the equality follows from Ri ∈ R0
i . By Remark 1, this contradicts efficiency.

Suppose x(R) = j for some j ∈ N\{i}. First, suppose tj(R) ≥ 0. Then, by weak

individual rationality, fj(R) ∈ Bj. Also, by weak individual rationality and no subsidy

for losers, for each k ∈ N\{i, j}, fk(R) ∈ Bk. Thus, (fk(R))k∈N\{i} ∈ BN\{i}, and by the

same discussion as in the previous case, we can derive a contradiction to efficiency. Then,

suppose tj(R) < 0. Let R′
j ∈ R0

j ∩ RQ
j be such that for each (zj)k∈N∈{i,j} ∈ BN\{i,j},

v′j(j) < vi(i)−max
x∈X

∑
j∈N\{i,j}

(
Vj(x, zj)− Vj(i, zj)

)
. (2)

Note that by (1), we can choose such a preference R′
j. For each x ∈ Xf

j (R−j)\{j}, we

have v′j(j) − tfj (R−j; j) > 0 ≥ vj(x) − tfj (R−j;x), where the first inequality follows from
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desirability of own consumption of R′
j and tfj (R−j; j) = tj(R) < 0, and the second one

from no subsidy for losers. Thus, by Lemma 3, x(R′
j, R−j) = j. By weak individual

rationality and no subsidy for losers, for each k ∈ N\{i, j}, fk(R′
j, R−j) ∈ Bk. By (2),

vi(i)− v′j(j) +
∑

k∈N\{i,j}

(
Vk(i, fk(R

′
j, R−j))− Vk(j, fk(R

′
j, R−j))

)
> 0.

By Remark 1, this contradicts efficiency.

The following lemma states that under a rule satisfying the four properties, for each

agent i ∈ N and each R−i ∈ R−i, the payment of agent i when he receives the object is

greater than that when he does not. Note that by Lemma 4, i ∈ Xf
i (R−i).

Lemma 5. Let i ∈ N , R−i ∈ R−i, and x ∈ Xf
i (R−i)\{i}. Then, tfi (R−i; i) > tfi (R−i;x).

Proof. By contradiction, suppose tfi (R−i; i) ≤ tfi (R−i;x). By x ∈ Xf
i (R−i), there isRi ∈ Ri

such that x(Ri, R−i) = x. Then,

zfi (R−i; i) = (i, tfi (R−i; i)) Ri (i, t
f
i (R−i;x)) Pi (x, t

f
i (R−i;x)) = fi(R),

where the first relation follows from tfi (R−i; i) ≤ tfi (R−i;x), and the second one from de-

sirability of own consumption of Ri. However, this contradicts Lemma 3.

The following lemma states that under a rule satisfying the four properties, if an agent

with an identity-independent preference does not receive the object, then his payment is

equal to zero.

Lemma 6. Let i ∈ N . Assume that R−i ⊆ R+
−i. For each R ∈ RN and each j ∈ N , if

Rj ∈ RI
j and x(R) ̸= j, then tj(R) = 0.

Proof. Let R ∈ RN and j ∈ N be such that Rj ∈ RI
j and x(R) ̸= j. By no subsidy for

losers, tj(R) ≥ 0. By contradiction, suppose tj(R) > 0. By Lemma 4, j ∈ Xf
j (R−j). By

Lemma 5, tfj (R−j; j) > tfj (R−j;x(R)) = tj(R). Let R′
j ∈ R0

j ∩ RQ
j be a preference such

that v′j(j) < tfj (R−j; j). Then, byR
′
j ∈ R0

j and weak individual rationality, x(R′
j, R−j) ̸= j.

By R′
j ∈ R0

j , weak individual rationality and no subsidy for losers together imply that

tj(R
′
j, R−j) = 0. By Lemma 1, x(R), x(R′

j, R−j) ∈ N . Thus, by Rj ∈ RI
j , fj(R

′
j, R−j) =

(x(R′
j, R−j), 0) Ij (x(R), 0). By tj(R) > 0, (x(R), 0) Pj fj(R). Combining these, we get

fj(R
′
j, R−j) Pj fj(R), which contradicts strategy-proofness.
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The following lemma states that under a rule satisfying the four properties, an agent

j ∈ N with an identity-independent preference finds his outcome bundle at least as desir-

able as (xj(Rj), 0).

Lemma 7. Let i ∈ N . Assume that R−i ⊆ R+
−i. For each R ∈ RN and each j ∈ N , if

Rj ∈ RI
j , then fj(R) Rj (xj(Rj), 0).

Proof. Let R ∈ RN and j ∈ N be such that Rj ∈ RI
j .

Suppose x(R) ̸= j. Then, by Rj ∈ RI
j , Lemma 6 implies that tj(R) = 0. By Lemma 1,

x(R) ̸= 0. Thus, by Rj ∈ RI
j , fj(R) Ij (xj(Rj), 0).

Suppose x(R) = j. By contradiction, suppose that (xj(Rj), 0) Pj fj(R). Then, we have

Vj(j, (xj(Rj), 0)) < tj(R). By desirability of own consumption of Rj, Vj(j, (xj(Rj), 0)) > 0.

Let R′
j ∈ R0

j ∩ RQ
j be such that v′j(j) < Vj(j, (xj(Rj), 0)). By Vj(j, (xj(Rj), 0)) < tj(R),

v′j(j) < tj(R) = tfj (R−j; j). ByR
′
j ∈ R0

j , weak individual rationality implies x(R′
j, R−j) ̸= j.

Thus, by Lemma 6, tj(R
′
j, R−j) = 0. By Lemma 1, x(R′

j, R−j) ̸= 0. Thus, by Rj ∈ RI
j ,

fj(R
′
j, R−j) Ij (xj(Rj), 0) Pj fj(R), which contradicts strategy-proofness.

The following lemma states that under a rule satisfying the four properties, if an agent

j ∈ N has an identity-independent preference whose valuation of own consumption at

(xj(Rj), 0) is greater than the payment tfj (R−j; j) when he receives the object, then he

indeed receives the object. Note that by Lemma 4, j ∈ Xf
j (R−j).

Lemma 8. Let i ∈ N . Assume that R−i ⊆ R+
−i. For each R ∈ RN and each j ∈ N , if

Rj ∈ RI
j and Vj(j, (xj(Rj), 0)) > tfj (R−j; j), then x(R) = j.

Proof. Let R ∈ RN and j ∈ N be such that Rj ∈ RI
j and Vj(j, (xj(Rj), 0)) > tfj (R−j; j).

By contradiction, suppose x(R) ̸= j. By Rj ∈ RI
j , Lemma 6 implies tj(R) = 0. By

Vj(j, (xj(Rj), 0)) > tfj (R−j; j) and Rj ∈ RI
j , z

f
j (R−j; j) Pj (xj(Ri), 0) Ij (x(R), 0) = fj(R).

This contradicts Lemma 3.

The following lemma states that under a rule satisfying the four properties, if other

agents have quasi-linear preferences, then the payment of an agent is equivalent to that of

a pivotal rule. Since it follows from Fact 1, we omit the proof.

Lemma 9. Assume that RN ∩ RQ
N is convex. Let i ∈ N , R−i ∈ R−i ∩ RQ

−i, and x ∈ Xf
i (R−i).

Then, tfi (R−i;x) = maxx′∈X
∑

j∈N\{i} vj(x
′)−

∑
j∈N\{i} vj(x).
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Finally, the following lemma states that under a rule satisfying the four properties,

given other agents’ quasi-linear preferences, there is a preference of an agent such that he

does not receive the object and makes no payment.

Lemma 10. Assume that RN ∩ RQ
N is convex. Let i, j ∈ N be a distinct pair. Let

R−i ∈ R−i ∩ RQ
−i be such that for each k ∈ N\{i, j} and each x ∈ X\{i, k}, vk(x) = 0,

and vj(j) > maxk∈N\{i,j} vk(k). Then, there is Ri ∈ R0
i ∩ RQ

i such that fi(R) = (j, 0).

Proof. Let Ri ∈ R0
i ∩ RQ

i be such that vi(i) < vj(j). By R ∈ RQ
N , efficiency and Remark 1

together imply x(R) ∈ arg max
x∈X

∑
k∈N vk(x). Thus, by construction of R, x(R) = j. By

Lemma 9, ti(R) = tfi (R−i; j) = maxx∈X
∑

k∈N\{i} vk(x)− vj(j) = vj(j)− vj(j) = 0. Thus,

fi(R) = (j, 0).

Part I

Proofs of Characterization Theorems

In the first part, we prove the characterization theorems (Theorems 1, 4, and 5). Since

Theorem 1 corresponds to Theorem 4 for the case where NQL = N , we only provide the

proofs of Theorems 4 and 5.

B Proof of Theorem 4

In this section, we prove Theorem 4. Without loss of generality, let i = 1 throughout the

proof.

B.1 Proof of the “if” part

We prove the “if” part of Theorem 4. Let f = (x, t) be a generalized pivotal rule.

We begin with the following two lemmas. First, the following lemma states that if an

agent i ∈ NQL receives the object, then his valuations of own consumption at (xi(Ri), 0)

is no less than his payment. Since its proof is straightforward, we omit it.

Lemma 11. Let R ∈ RN and i ∈ NQL. If x(R) = i, then Vi(i, (xi(Ri), 0)) ≥ ti(R).
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The following lemma states the if an agent i ∈ NQL does not receive the object, then

his payment is equal to zero. Since its proof is straightforward, we omit it.

Lemma 12. Let R ∈ RN and i ∈ NQL. If x(R) ̸= i, then ti(R) = 0.

We show that f satisfies the four properties. Since the proof of no subsidy for losers

is straightforward, we omit it. By the definition of the object allocation rule under a

generalized pivotal rule and Remark 1, for each R ∈ RN , the allocation (x(R), t) is efficient

for R, where for each i ∈ N , ti = Vi(x(R), (xi(Ri), 0)). Thus, by Lemma 1, x(R) ̸= 0.

Efficiency. Let R ∈ RN . Let x ∈ X\{x(R)}. Let i = x(R) ∈ N . By Lemma 12, for

each j ∈ NQL with x(R) ̸= j, tj(R) = 0, and so by Rj ∈ RI
j , for each x ∈ X,

Vj(x, fj(R)) = Vj(x, (xj(Rj), 0)). (1)

If x = 0, then by R−1 ∈ R+
−1 and desirability of own consumption of R1, we have∑

j∈N Vj(x(R), fj(R)) >
∑

j∈N Vj(x, fj(R)). Thus, suppose x ̸= 0, and let j = x.

Suppose that i ∈ NQL. By Lemma 11 and Ri ∈ RI
i , fi(R) Ri (j, 0), which implies

Vi(j, fi(R)) ≤ 0. Then,

∑
k∈N

(
Vk(i, fk(R))− Vk(j, fk(R))

)
= ti(R)− Vi(j, fi(R)) +

∑
k∈N\{i}

(
Vk(i, (xk(Rk), 0))− Vk(j, (xk(Rk), 0))

)
≥ ti(R) +

∑
k∈N\{i}

(
Vk(i, (xk(Rk), 0))− Vk(j, (xk(Rk), 0))

)
= max

x′∈X

∑
k∈N\{i}

Vk(x
′, (xk(Rk), 0))−

∑
k∈N\{i}

Vk(j, (xk(Rk), 0)) ≥ 0,

where the first equality follows from (1) andRQL ∈ RQ
QL, the first inequality from Vi(j, fi(R)) ≤ 0,

and the second equality from ti(R) = maxx′∈X
∑

k∈N\{i} Vk(x
′, (xk(Rk), 0))−

∑
k∈N\{i} Vk(i, (xk(Rk), 0)).

Next, suppose that i ∈ QL. Then,

∑
k∈N

(
Vk(i, fk(R))− Vk(j, fk(R))

)
=

∑
k∈N

(
Vk(i, (xk(Rk), 0))− Vk(j, (xk(Rk), 0))

)
≥ 0,

where the equality follows from (1) and RQL ∈ RQ
QL, and the inequality from the definition
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of the object allocation rule under f .

Thus, in any case, by Remark 1, f(R) is efficient for R.

Weak individual rationality. Let i ∈ NQL and R ∈ RN . If x(R) = i, then by

Lemma 11, fi(R) Ri (xi(Ri), 0) Ri (xi(Ri), 0). If x(R) ̸= i, then by Lemma 12, fi(R) =

(x(R), 0) Ri (xi(Ri), 0).

Let i ∈ QL and R ∈ RN . Note that f(R) is equivalent to an outcome of a pivotal

rule for (R′
NQL, RQL), where for each j ∈ NQL, R′

j ∈ R+I
j ∩ RQ

j is such that v′j(j) =

Vj(j, (xj(Rj), 0)). Thus, by weak individual rationality of a pivotal rule, fi(R) Ri (xi(Ri), 0).

Strategy-proofness. Let i ∈ NQL, R ∈ RN , and R′
i ∈ Ri. If x(R) = x(R′

i, R−i),

then ti(R) = ti(R
′
i, R−i). Suppose x(R) = i and x(R′

i, R−i) ̸= i. Then, by Lemma 11,

fi(R) Ri (xi(Ri), 0). By Lemma 12, ti(R
′
i, R−i) = 0. Thus, byRi ∈ RI

i and x(R′
i, R−i) ∈ N\{i},

fi(R
′
i, R−i) Ii (xi(Ri), 0). Thus, fi(R) Ri fi(R

′
i, R−i). Suppose x(R) ̸= i and x(R′

i, R−i) =

i. Then, by Lemma 12, ti(R) = 0. We show Vi(i, fi(R)) ≤ ti(R
′
i, R−i). By contradic-

tion, suppose Vi(i, fi(R)) > ti(R
′
i, R−i). By Ri ∈ RI

i and x(R) ∈ N\{i}, Vi(i, fi(R)) =

Vi(i, (xi(Ri), 0)), and Vi(x(R), (xi(Ri), 0)) = 0. Then,

∑
j∈N

Vj(i, (xj(Rj), 0)) > max
x∈X

∑
j∈N\{i}

Vj(x, (xj(Rj), 0))

≥
∑

j∈N\{i}

Vj(x(R), (xj(Rj), 0)) =
∑
j∈N

Vj(x(R), (xj(Rj), 0)),

where the first inequality follows from Vi(i, (xi(Ri), 0)) = Vi(i, fi(R)) > ti(R) and the defi-

nition of the payment rule under f , and the equality from Vi(x(R), (xi(Ri), 0)) = 0. How-

ever, this contradicts the definition of the object allocation rule under f . Thus, we have

Vi(i, fi(R)) ≤ ti(R
′
i, R−i), which implies fi(R) Ri fi(R

′
i, R−i).

Let i ∈ QL. Note that for each R ∈ RN , f(R) is equivalent to an outcome of a pivotal

rule for (R′
NQL, RQL), where for each j ∈ NQL, R′

j ∈ R+I
j ∩ RQ

j is such that v′j(j) =

Vj(j, (xj(Rj), 0)). Thus, by strategy-proofness of a pivotal rule, for each R ∈ RN and each

R′
i ∈ Ri, fi(R) Ri fi(R

′
i, R−i). ■
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B.2 Proof of the “only if” part

We prove the “only if” part of Theorem 4. Let f = (x, t) be a rule on RN satisfying

efficiency, weak individual rationality, no subsidy for losers, and strategy-proofness. The

proof is in a series of lemmas.

Lemma 13. Let R ∈ RN . For each i ∈ NQL\{x(R)} and each x ∈ X, Vi(x, fi(R)) =

Vi(x, (xi(Ri), 0)).

Proof. Let i ∈ NQL\{x(R)}. By Ri ∈ RI
i and x(R) ̸= i, Lemma 6 implies ti(R) = 0.

Thus, by Ri ∈ RI
i , fi(R) Ii (xi(Ri), 0), which implies that for each x ∈ X, Vi(x, fi(R)) =

Vi(x, (xi(Ri), 0)).

By the following two lemmas, we show if an agent with a non-quasi-linear preference re-

ceives the object, then his payment under the rule f coincides with that under a generalized

pivotal rule. Note that for each i ∈ N and each R−i ∈ R−i, by Lemma 4, i ∈ Xf
i (R−i).

Lemma 14. Let i ∈ NQL and R−i ∈ R−i. Then, t
f
i (R−i; i) ≥ maxx∈X

∑
j∈N\{i} Vj(x, (xj(Rj), 0))−∑

j∈N\{i} Vj(i, (xj(Rj), 0)).

Proof. By contradiction, suppose that tfi (R−i; i) < maxx∈X
∑

j∈N\{i} Vj(x, (xj(Rj), 0)) −∑
j∈N\{i} Vj(i, (xj(Rj), 0)). Let Ri ∈ R0

i ∩ RQ
i be such that vi(i) > tfi (R−i; i), and

vi(i) < max
x∈X

∑
j∈N\{i}

Vj(x, (xj(Rj), 0))−
∑

j∈N\{i}

Vj(i, (xj(Rj), 0)). (1)

By vi(i) > tfi (R−i; i), Lemma 8 implies x(R) = i. Let x ∈ arg max
x′∈X

∑
j∈N\{i} Vj(x

′, (xj(Rj), 0)).

Then,

∑
j∈N

(
Vj(x, fj(R))−Vj(x(R), fj(R))

)
=

∑
j∈N\{i}

(
Vj(x, (xj(Rj), 0))−Vj(x, (xj(Rj), 0))

)
−vi(i) > 0,

where the equality follows from Lemma 13 and RQL ∈ RQ
QL, and the inequality from (1).

By Remark 1, this contradicts efficiency.

Lemma 15. Let i ∈ NQL and R−i ∈ R−i. Then, t
f
i (R−i; i) ≤ maxx∈X

∑
j∈N\{i} Vj(x, (xj(Rj), 0))−∑

j∈N\{i} Vj(i, (xj(Rj), 0)).
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Proof. Suppose by contradiction that tfi (R−i; i) > maxx∈X
∑

j∈N\{i} Vj(x, (xj(Rj), 0)) −∑
j∈N\{i} Vj(i, (xj(Rj), 0)). Let Ri ∈ R0

i ∩ RQ
i be such that vi(i) < tfi (R−i; i), and

vi(i) > max
x∈X

∑
j∈N\{i}

Vj(x, (xj(Rj), 0))−
∑

j∈N\{i}

Vj(i, (xj(Rj), 0)). (2)

By vi(i) < tfi (R−i; i) and weak individual rationality, x(R) ̸= i. By Lemma 1, x(R) ̸= 0.

Thus, x(R) ∈ N\{i}. Let j = x(R).

First, suppose j ∈ NQL. Then,

vi(i) >
∑

k∈N\{i}

Vk(j, (xk(Rk), 0))−
∑

k∈N\{i}

Vk(i, (xk(Rk), 0))

= Vj(j, (xj(Rj), 0)) +
∑

k∈N\{j}

Vk(j, (xk(Rk), 0))−
∑

k∈N\{i.j}

Vk(i, (xk(Rk), 0)),

where the inequality follows from (2), and the equality from Ri,j ∈ RI
i,j. Thus,

Vj(j, (xj(Rj), 0)) <
(
vi(i) +

∑
k∈N\{i.j}

Vk(i, (xk(Rk), 0))
)
−

∑
k∈N\{j}

Vk(j, (xk(Rk), 0))

=
∑

k∈N\{j}

Vk(i, (xk(Rk), 0))−
∑

k∈N\{j}

Vk(j, (xk(Rk), 0)) ≤ tj(R),

where the last inequality follows from Lemma 14. This implies (xj(Rj), 0) Pj fj(R), which

contradicts Lemma 7.

Next, suppose j ∈ QL. We have

∑
k∈N

(
Vk(i, fk(R))−Vk(j, fk(R))

)
= vi(i)−

∑
k∈N\{i}

(
Vk(j, (xk(Rk), 0))−Vk(i, (x(Rk), 0))

)
> 0,

where the first equality follows from Lemma 13 and RQL ∈ RQ
QL, and the inequality from

(2). By Remark 1, this contradicts efficiency.

The next lemma shows that the payment of an agent with a quasi-linear preference

under the rule f coincides with that under a generalized pivotal rule.

Lemma 16. Let i ∈ QL and R−i ∈ R−i. For each x ∈ Xf
i (R−i), we have tfi (R−i;x) =

maxx′∈X
∑

j∈N\{i} Vj(x
′, (xj(Rj), 0))−

∑
j∈N\{i} Vj(x, (xj(Rj), 0)).

Proof. Let x ∈ Xf
i (R−i). Note that by Lemma 1, x ̸= 0. By contradiction, suppose that
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tfi (R−i;x) ̸= maxx′∈X
∑

j∈N\{i} Vj(x
′, (xj(Rj), 0)) −

∑
j∈N\{i} Vj(x, (xj(Rj), 0)). There are

two cases.

Case 1. tfi (R−i;x) < maxx′∈X
∑

j∈N\{i} Vj(x
′, (xj(Rj), 0))−

∑
j∈N\{i} Vj(x, (xj(Rj), 0)).

Let Ri ∈ R+I
i ∩ RQ

i be such that vi(x) > tfi (R−i;x),

vi(x) < max
x′∈X

∑
j∈N\{i}

Vj(x
′, (xj(Rj), 0))−

∑
j∈N\{i}

Vj(x, (xj(Rj), 0)), (3)

for each x′ ∈ X\{i, x}, vi(x′) = 0, and if x ̸= i, then vi(i)− vi(x) < tfi (R−i; i)− tfi (R−i;x).

Note that we can choose such Ri by Lemma 5. By vi(x) > tfi (R−i;x) and no subsidy for

losers, for each x′ ∈ Xf
i (R−i)\{i, x}, vi(x)− tfi (R−i;x) > 0 ≥ vi(x

′)− tfi (R−i;x
′). If x ̸= i,

then by vi(i)− vi(x) < tfi (R−i; i)− tfi (R−i;x), vi(x)− tfi (R−i;x) > vi(i)− tfi (R−i; i). Thus,

by Lemma 3, x(R) = x. Let x′ ∈ arg max
x′′∈X

∑
j∈N\{i} Vj(x

′′, (xj(Rj), 0)). Then,

∑
j∈N\{i}

Vj(x, (xj(Rj), 0)) ≤ vi(x) +
∑

j∈N\{i}

Vj(x, (xj(Rj), 0)) <
∑

j∈N\{i}

Vj(x
′, (xj(Rj), 0)),

where the second inequality follows from (3). Thus, x ̸= x′. By R−1 ∈ R+
−1 and desirability

of own consumption of R1, x
′ ̸= 0.

Suppose x ∈ NQL. By Rx ∈ RI
x and x′ ̸= x, 0, Vx(x

′, (xx(Rx), 0)) = 0. We have

Vx(x, (xx(Rx), 0)) <
∑

j∈N\{i}

Vj(x
′, (xj(Rj), 0))−

( ∑
j∈N\{i,x}

Vj(x, (xj(Rj), 0)) + vi(x)
)

=
∑

j∈N\{i}

Vj(x
′, (xj(Rj), 0))−

∑
j∈N\{x}

Vj(x, (xj(Rj), 0))

≤
∑

j∈N\{x}

Vj(x
′, (xj(Rj), 0))−

∑
j∈N\{x}

Vj(x, (xj(Rj), 0)) ≤ tx(R),

where the first inequality follows from (3), the second one from Vx(x
′, (xx(Rx), 0)) = 0, and

the last one from x ∈ NQL and Lemma 14. Thus, (xx(Rx), 0) Px fx(R), which contradicts

Lemma 7.
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Next, suppose x ∈ QL. Then,

∑
j∈N

(
Vj(x, (xj(Rj), 0))− Vj(x

′, (xj(Rj), 0))
)
=

∑
j∈N

(
Vj(x, fj(R))− Vj(x

′, fj(R))
)
≥ 0, (4)

where the equality follows from Lemma 13 and RQL ∈ RQ
QL, and the inequality from effi-

ciency and Remark 1. We also have

∑
j∈N

Vj(x, (xj(Rj), 0)) = vi(x) +
∑

j∈N\{i}

Vj(x, (xj(Rj), 0))

<
∑

j∈N\{i}

Vj(x
′, (xj(Rj), 0)) ≤

∑
j∈N

Vj(x
′, (xj(Rj), 0)),

where the first inequality follows from (3). This contradicts (4).

Case 2. tfi (R−i;x) > maxx′∈X
∑

j∈N\{i} Vj(x
′, (xj(Rj), 0))−

∑
j∈N\{i} Vj(x, (xj(Rj), 0)).

Let Ri ∈ R+I
i ∩ RQ

i be such that vi(x) < tfi (R−i;x),

vi(x) > max
x′∈X

∑
j∈N\{i}

Vj(x
′, (xj(Rj), 0))−

∑
j∈N\{i}

Vj(x, (xj(Rj), 0)),

for each x′ ∈ X\{i, x}, vi(x′) = 0, and if x ̸= i, then vi(i)− vi(x) < tfi (R−i; i)− tfi (R−i;x).

By Lemma 5, we can choose such Ri. By vi(x) < tfi (R−i;x), 0 > vi(x) − tfi (R−i;x). If

x ̸= i, then by vi(i)− vi(x) < tfi (R−i; i)− tfi (R−i;x), vi(x)− tfi (R−i;x) > vi(i)− tfi (R−i; i).

Thus, by weak individual rationality, x(R) ∈ X\{x, i}. Also, by Lemma 1, x(R) ̸= 0.

Let j = x(R). Then, in the same way as in the proof of Lemma 15, we can derive a

contradiction. Thus, we omit the detail.

The next lemma shows that the object allocation rule under the rule f coincides with

that under a generalized pivotal rule.

Lemma 17. For each R ∈ RN , x(R) ∈ arg max
x∈X

∑
i∈N Vi(x, (xi(Ri), 0)).

Proof. Let R ∈ RN . By Lemma 1, x(R) ̸= 0. Let x ∈ arg max
x′∈X

∑
i∈N Vi(x

′, (xi(Ri), 0)).

By R−1 ∈ R+
−1 and desirability of own consumption of R1, x ̸= 0. Let i = x(R) and j = x.
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First, suppose i ∈ NQL. Then.

∑
k∈N

(
Vk(i, (xk(Rk), 0))− Vk(j, (xk(Rk), 0))

)
= Vi(i, (xi(Ri), 0)) +

∑
k∈N\{i}

(
Vk(i, (xk(Rk), 0))− Vk(j, (xk(Rk), 0))

)
≥ ti(R) +

∑
k∈N\{i}

(
Vk(i, (xk(Rk), 0))− Vk(j, (xk(Rk), 0))

)
≥ max

x′∈X

∑
k∈N\{i}

Vk(x
′, (xk(Rk), 0))−

∑
k∈N\{i}

Vk(j, (xk(Rk), 0)) ≥ 0,

where the equality follows from Ri ∈ RI
i , the first inequality from Ri ∈ RI

i and Lemma 7,

and the second one from Lemma 14.

Next, suppose i ∈ QL. Then,

∑
k∈N

(
Vk(i, (xk(Rk), 0))− Vk(j, (xk(Rk), 0))

)
=

∑
k∈N

(
Vk(i, fk(R))− Vk(j, fk(R))

)
≥ 0,

where the equality follows from Lemma 13 and RQL ∈ RQ
QL, and the inequality from Re-

mark 1 and efficiency.

Now, we are ready to complete the proof of the “only if” part of Theorem 4. By

Lemma 17, the object allocation rule under f coincides with that under a generalized

pivotal rule. By Lemmas 14, 15, and 16, the payment rule under f also coincides with that

under a generalized pivotal rule. Thus, f is a generalized pivotal rule. ■

C Proof of Theorem 5

In this section, we prove Theorem 5. Throughout the proof, without loss of generality, let

i = 1.

C.1 Proof of the “if” part

Let f = (x, t) be a generalized pivotal rule respecting agent 1. By the definition of the

rule, for each R ∈ RN ,
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f1(R) ∈ B
(
R1,

{(
i, max

j∈N\{1}
vj(j)− vi(i)

)
: i ∈ N\{1}

} ∪ {(
1, max

i∈N\{1}
vi(i)

)})
. (1)

We begin with the following lemma.

Lemma 18. Let R ∈ RN . For each i ∈ N\{1}, if x(R) = i, then vi(i) ≥ ti(R).

Proof. Suppose x(R) = i. Let j ∈ N−1,i(R−i). Without loss of generality, let i = 2 and

j = 3. By 3 ∈ N−1,2(R−2), v3(3) = maxi∈N\{1,2} vi(i). There are two cases.

Case 1. 3 ⪰1 2.

Then, t2(R) = max{V1(1, (2, 0)),maxi∈N\{1,2}:i⪰12 τ2,i(R−2)}. We claim v2(2) ≥ v3(3).

By contradiction, suppose v3(3) > v2(2). Then, we have v3(3) = maxi∈N\{1} vi(i), and

(3, v3(3) − v3(3)) = (3, 0) R1 (2, 0) P1 (2, v3(3) − v2(2)) = f1(R), where the first relation

follows from 3 ⪰1 2, and the second one from v3(3) > v2(2). However, this contradicts

(1). Thus, v2(2) ≥ v3(3), and so v2(2) = maxi∈N\{1} vi(i). Thus, by (1), we have (2, 0) =

(2, v2(2)− v2(2)) = f1(R) R1 (1, v2(2)), which implies

v2(2) ≥ V1(1, (2, 0)). (2)

Let i ∈ N\{1, 2} be such that i ⪰1 2. Then, by (1), (2, 0) = f1(R) R1 (i, v2(2) − vi(i)),

which implies v2(2)− vi(i) ≥ V1(i, (2, 0)). Thus, if v3(3)− vi(i) ≤ V1(i, (2, 0)), then

v2(2) ≥ vi(i) + V1(i, (2, 0)) = τ2,i(R−2). (3)

If v3(3)− vi(i) ≥ V1(i, (2, 0)), then V1(2, (i, v3(3)− vi(i))) ≥ 0, and so by v2(2) ≥ v3(3),

v2(2) ≥ v3(3)− V1(2, (i, v3(3)− vi(i))) = τ2,i(R−2). (4)

By (2), (3), and (4), v2(2) ≥ max
{
V1(1, (2, 0)),maxi∈N\{1,2}:i⪰12 τ2,i(R−2)

}
= t2(R).

Case 2. 2 ≻1 3.
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Then, t2(R) = max{τ2,1(R−2),maxi∈N\{1,2}:i⪰13 τ2,i(R−2)}. The proof consists of three

claims.

Claim 1. We have v2(2) ≥ τ2,1(R−2).

Proof. Suppose first that v3(3) ≤ V1(1, (2, 0)). We claim that v2(2) ≥ v3(3). By con-

tradiction, suppose that v3(3) > v2(2). Then, we have v3(3) = maxi∈N\{1} vi(i), and

(1, v3(3)) R1 (2, 0) P1 (2, v3(3) − v2(2)) = f1(R), where the first relation follows from

v3(3) ≤ V1(1, (2, 0)), and the second one from v3(3) > v2(2). This contradicts (1). Thus,

v2(2) ≥ v3(3), which implies v2(2) = maxi∈N\{1} vi(i). Thus, by (1), we have (2, 0) =

(2, v2(2)− v2(2)) = f1(R) R1 (1, v2(2)), which implies v2(2) ≥ V1(1, (2, 0)) = τ2,1(R−2).

Next, suppose V1(1, (2, 0)) ≤ v3(3) ≤ V1(1, (3, 0)). By v3(3) ≥ V1(1, (2, 0)), we have

V1(2, (1, v3(3))) ≥ 0. Thus, if v2(2) ≥ v3(3), then v2(2) ≥ v3(3)−V1(2, (1, v3(3))) = τ2,1(R−2).

If v3(3) ≥ v2(2), then v3(3) = maxi∈N\{1} vi(i). By (1), (2, v3(3)−v2(2)) = f1(R) R1 (1, v3(3)),

which implies V1(2, (1, v3(3))) ≥ v3(3) − v2(2). Thus, v2(2) ≥ v3(3) − V1(2, (1, v3(3))) =

τ2,1(R−2).

Finally, suppose v3(3) ≥ V1(1, (3, 0)). By 2 ≻1 3, V1(2, (3, 0)) > 0. Thus, if v2(2) ≥ v3(3),

then v2(2) ≥ v3(3)−V1(2, (3, 0)) = τ2,1(R−2). If v3(3) ≥ v2(2), then v3(3) = maxi∈N\{1}vi(i),

and so by (1), (2, v3(3) − v2(2)) = f1(R) R1 (3, v3(3) − v3(3)) = (3, 0). This implies

V1(2, (3, 0)) ≥ v3(3)− v2(2). Thus, v2(2) ≥ v3(3)− V1(2, (3, 0)) = τ2,1(R−2).

Claim 2. For each i ∈ N\{1, 2} with i ⪰1 2, we have v2(2) ≥ τ2,i(R−2).

Proof. Let i ∈ N\{1, 2} be such that i ⪰1 2.

First, suppose v3(3) − vi(i) ≥ V1(i, (2, 0)). Then, (2, 0) R1 (i, v3(3) − vi(i)), which im-

plies V1(2, (i, v3(3) − vi(i))) ≥ 0. Thus, if v2(2) ≥ v3(3), then we have v2(2) ≥ v3(3) −

V1(2, (i, v3(3) − vi(i))) = τ2,i(R−i). If v3(3) ≥ v2(2), then v3(3) = maxj∈N\{1} vj(j), and

so by (1), we have (2, v3(3) − v2(2)) = f1(R) R1 (i, v3(3) − vi(i)). This implies that

V1(2, (i, v3(3) − vi(i))) ≥ v3(3) − v2(2). Thus, v2(2) ≥ v3(3) − V1(2, (i, v3(3) − vi(i))) =

τ2,i(R−2).

Next, suppose v3(3) − vi(i) ≤ V1(i, (2, 0)). We claim that v2(2) ≥ v3(3). By contra-

diction, suppose that v3(3) > v2(2). Then, v3(3) = maxj∈N\{1} vj(j), and so we have

(i, v3(3) − vi(i)) R1 (2, 0) P1 (2, v3(3) − v2(2)) = f1(R), where the first relation follows

from v3(3) − vi(i) ≤ V1(i, (2, 0)), and the second one from v3(3) > v2(2). This contra-

dicts (1). Thus, v2(2) ≥ v3(3). Then, v2(2) = maxj∈N\{1} vj(j), and by (1), (2, 0) =

45



(2, v2(2)− v2(2)) = f1(R) R1 (i, v2(2)− vi(i)). This implies v2(2)− vi(i) ≥ V1(i, (2, 0)), or

equivalently, v2(2) ≥ vi(i) + V1(i, (2, 0)) = τ2,i(R−2).

Claim 3. For each i ∈ N\{1, 2} with 2 ≻1 i ⪰1 3, we have v2(2) ≥ τ2,i(R−2).

Proof. First, suppose v2(2) ≥ v3(3). By v3(3) ≥ vi(i), V1(2, (i, v3(3) − vi(i))) ≥ 0. Thus,

by v2(2) ≥ v3(3), v2(2) ≥ v3(3)− V1(2, (i, v3(3)− vi(i))) = τ2,i(R−2).

Next, suppose v3(3) ≥ v2(2). Then, v3(3) = maxj∈N\{1} vj(j), and so by (1), we have

(2, v3(3)−v2(2)) = f1(R) R1 (i, v3(3)−vi(i)). Thus, V1(2, (i, v3(3)−vi(i))) ≥ v3(3)−v2(2),

or equivalently, v2(2) ≥ v3(3)− V1(2, (i, v3(3)− vi(i))) = τ2,i(R−i).

By Claims 1, 2, and 3, v2(2) ≥ max{τ2,1(R−2),maxi∈N\{1,2}:i⪰13 τ2,i(R−2)} = t2(R).

Now, we proceed to the proof of the “if” part of Theorem 5. Since no subsidy for losers

follows from the definition of the rule, we show that f satisfies the other three properties.

Efficiency. Let R ∈ RN . By (1), x(R) ∈ N , i.e., x(R) ̸= 0. There are two cases.

Case 1. x(R) = 1.

Then, t1(R) = maxi∈N\{1} vi(i). Let x ∈ X\{x(R)}. If x = 0, then

∑
i∈N

(
Vi(x(R), fi(R))− Vi(x, fi(R))

)
≥ V1(1, f1(R))− V1(0, f1(R)) > 0,

where the first inequality follows from R−1 ∈ R+
−1, and the second one from desirability

of own consumption of R1. Next, suppose that x ∈ N\{1}. Note that by (1), we have

f1(R) R1 (x,maxi∈N\{1} vi(i)−vx(x)). Thus, maxi∈N\{1} vi(i)−vx(x) ≥ V1(x, f1(R)). Thus,

t1(R)− V1(x, f1(R)) = max
i∈N\{1}

vi(i)− V1(x, f1(R)) ≥ vx(x). (5)

Then,

∑
i∈N

(
Vi(x(R), fi(R))− Vi(x, fi(R))

)
= t1(R)− V1(x, f1(R))− vx(x) ≥ 0,

where the equality follows from R−1 ∈ RI
−1, and the inequality from (5). Thus, by Re-

mark 1, f(R) is efficient for R.

46



Case 2. x(R) ∈ N\{1}.

Let i = x(R). Then, t1(R) = maxj∈N\{1} vj(j)−vi(i). By (1), f1(R) R1 (1,maxj∈N\{1} vj(j)),

which implies that maxj∈N\{1} vj(j) ≥ V1(1, f1(R)). Thus,

t1(R)− V1(1, f1(R)) =
(

max
j∈N\{1}

vj(j)− vi(i)
)
−V1(1, f1(R)) ≥ − vi(i). (6)

Let x ∈ X\{x(R)}. If x = 0, then

∑
j∈N

(
Vj(x(R), fj(R))−Vj(x, fj(R))

)
≥ t1(R)−V1(0, f1(R))+vi(i) > t1(R)−V1(1, f1(R))+vi(i) ≥ 0,

where the first inequality follows from R−1 ∈ R+
−1, the second one from desirability of own

consumption of R1, and the last one from (6). If x = 1, then

∑
j∈N

(
Vj(x(R), fj(R))− Vj(x, fj(R))

)
= t1(R)− V1(1, f1(R)) + vi(i) ≥ 0,

where the equality follows from R−1 ∈ RI
−1, and the inequality from (6). Finally, sup-

pose that x ∈ N\{1}. By (1), f1(R) R1 (x,maxj∈N\{1} vj(j) − vx(x)), which implies that

maxj∈N\{1} vj(j)− vx(x) ≥ V1(x, f1(R)). Thus,

t1(R)− V1(x, f1(R)) =
(

max
j∈N\{1}

vj(j)− vi(i)
)
−V1(x, f1(R)) ≥ vx(x)− vi(i). (7)

Then,

∑
j∈N

(
Vj(x(R), fj(R))− Vj(x, fj(R))

)
= t1(R)− V1(x, f1(R)) + vi(i)− vx(x) ≥ 0,

where the equality follows from R−1 ∈ RI
−1, and the inequality from (7). Thus, by Re-

mark 1, f(R) is efficient for R.

Weak individual rationality. LetR ∈ RN . First, we consider agent 1. Let i ∈ N\{1}

be such that vi(i) = maxj∈N\{1} vj(j). By (1), f1(R) R1 (i,maxj∈N\{1} vj(j) − vi(i)) =

(i, 0) R1 (x1(R1), 0). Then, we consider the other agents. Let i ∈ N\{1}. If x(R) ̸= i,
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then ti(R) = 0, and so fi(R) Ri (xi(Ri), 0). If x(R) = i, then by Lemma 18, we have that

fi(R) Ri (xi(Ri), 0) Ri (xi(Ri), 0).

Strategy-proofness. Let R ∈ RN . First, consider agent 1. Let R
′
1 ∈ R1. By (1),

f1(R
′
1, R−1) ∈

{(
i, max

j∈N\{i}
vj(j)− vi(i)

)
: j ∈ N\{1}

} ∪ {(
1, max

i∈N\{1}
vi(i)

)}
.

Thus, by (1), f1(R) R1 f1(R
′
1, R−1).

Next, we consider the other agents. Let i ∈ N\{1}. Let j ∈ N−1,i(R−i). Without loss

of generality, let i = 2 and j = 3. Note that v3(3) = maxi∈N\{1,2} vi(i).

We show the following two lemmas, both of which show that if agent 2’s (quasi-linear)

valuation of own consumption is greater than the payment when he receives the object,

then he indeed receives the object.

Lemma 19. Suppose 3 ⪰1 2 and v2(2) > max{V1(1, (2, 0)),maxi∈N\{1,2}:i⪰12 τ2,i(R−2)}.

Then, x(R) = 2.

Proof. Suppose by contradiction that x(R) ̸= 2. Note that by (1), x(R) ∈ N , i.e., x(R) ̸= 0.

Thus, there are three cases.

Case 1. x(R) = 1.

Suppose v2(2) ≥ v3(3). Then, v2(2) = maxi∈N\{1} vi(i). Thus, t1(R) = v2(2). By

v2(2) > V1(1, (2, 0)), (2, v2(2)−v2(2)) = (2, 0) P1 (1, v2(2)) = f1(R), which contradicts (1).

Next, suppose v3(3) ≥ v2(2). Then, v3(3) = maxi∈N\{1} vi(i). Thus, t1(R) = v3(3).

Then, (3, v3(3) − v3(3)) = (3, 0) R1 (2, 0) P1 (1, v2(2)) R1 (1, v3(3)) = f1(R), where the

first relation follows from 3 ⪰1 2, the second one from v2(2) > V1(1, (2, 0)), and the third

one from v3(3) ≥ v2(2). This contradicts (1).

Case 2. x(R) ∈ N\{1, 2} and x(R) ⪰1 2.

Let i = x(R). Suppose that v3(3) − vi(i) ≤ V1(i, (2, 0)). Then, τ2,i(R−2) = vi(i) +

V1(i, (2, 0)). Thus, v2(2) > τ2,i(R−2) = vi(i) + V1(i, (2, 0)). By v3(3)− vi(i) ≤ V1(i, (2, 0)),

vi(i) + V1(i, (2, 0)) ≥ v3(3). Thus, v2(2) > v3(3), and so v2(2) = maxj∈N\{1} vj(j). By
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v2(2) > vi(i) + V1(i, (2, 0)), v2(2)− vi(i) > V1(i, (2, 0)). Thus, we have (2, v2(2)− v2(2)) =

(2, 0) P1 (i, v2(2)− vi(i)) = f1(R). This contradicts (1).

Next, suppose that v3(3) − vi(i) ≥ V1(i, (2, 0)). Then, we have τ2,i(R−2) = v3(3) −

V1(2, (i, v3(3) − vi(i))). First, suppose v3(3) ≥ v2(2). Then, v3(3) = maxj∈N\{1} vj(j).

By v2(2) > τ2,i(R−2) = v3(3) − V1(2, (i, v3(3) − vi(i))), V1(2, (i, v3(3) − vi(i))) > v3(3) −

v2(2). Thus, (2, v3(3)− v2(2)) P1 (i, v3(3)− vi(i)) = f1(R), which contradicts (1). Suppose

instead v2(2) > v3(3). Then, v2(2) = maxj∈N\{1} vj(j). Recall that we have assumed

v3(3)−vi(i) ≥ V1(i, (2, 0)). Then, v2(2)−vi(i) > v3(3)−vi(i) ≥ V1(i, (2, 0)), which implies

that (2, v2(2)− v2(2)) = (2, 0) P1 (i, v2(2)− vi(i)) = f1(R). This contradicts (1).

Case 3. x(R) ∈ N\{1, 2} and 2 ≻1 x(R).

Let i = x(R). If v2(2) ≥ v3(3), then v2(2) = maxj∈N\{1} vj(j), and (2, v2(2)− v2(2)) =

(2, 0) P1 (i, 0) R1 (i, v2(2) − vi(i)) = f1(R), where the first relation follows from 2 ≻1 i,

and the second one from v2(2) ≥ vi(i). This contradicts (1). Thus, v3(3) > v2(2), and

so v3(3) = maxj∈N\{1} vj(j). Then, by v2(2) > τ2,i(R−2) = v3(3) − V1(2, (i, v3(3) − vi(i))),

V1(2, (i, v3(3)−vi(i))) > v3(3)−v2(2). Thus, (2, v3(3)−v2(2)) P1 (i, v3(3)−vi(i)) = f1(R),

which contradicts contradicts (1).

Lemma 20. Suppose 2 ≻1 3 and v2(2) > max{τ2,1(R−2),maxi∈N\{1,2}:i⪰13 τ2,i(R−2)}. Then,

x(R) = 2.

Proof. By contradiction, suppose x(R) ̸= 2. By (1), x(R) ∈ N . There are four cases.

Case 1. x(R) = 1.

First, suppose v3(3) ≤ V1(1, (2, 0)). Then, τ2,1(R−2) = V1(1, (2, 0)). By v2(2) > τ2,1(R−2) =

V1(1, (2, 0)) and V1(1, (2, 0)) ≥ v3(3), v2(2) > v3(3). Thus, v2(2) = maxi∈N\{1} vi(i), and

t1(R) = v2(2). By v2(2) > V1(1, (2, 0)), (2, v2(2) − v2(2)) = (2, 0) P1 (1, v2(2)) = f1(R),

which contradicts (1).

Next, suppose V1(1, (2, 0)) ≤ v3(3) ≤ V1(1, (3, 0)). Then, τ2,1(R−2) = v3(3)−V1(2, (1, v3(3))).

By v2(2) > τ2,1(R−2) = v3(3) − V1(2, (1, v3(3))), V1(2, (1, v3(3))) > v3(3) − v2(2). Thus, if

v3(3) ≥ v2(2), then v3(3) = maxi∈N\{1} vi(i), and (2, v3(3) − v2(2)) P1 (1, v3(3)) = f1(R),

which contradicts (1). Suppose v2(2) > v3(3). Then, v2(2) = maxi∈N\{1} vi(i), and t1(R) =
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v2(2). By v3(3) ≥ V1(1, (2, 0)), (2, 0) R1 (1, v3(3)). By v2(2) > v3(3), (1, v3(3)) P1 (1, v2(2)) =

f1(R). Thus, we get (2, v2(2)− v2(2)) = (2, 0) P1 f1(R), which contradicts (1).

Finally, suppose v3(3) ≥ V1(1, (3, 0)). Then, τ2,1(R−2) = v3(3) − V1(2, (3, 0)). By

v2(2) > τ2,1(R−2) = v3(3)−V1(2, (3, 0)), V1(2, (3, 0)) > v3(3)−v2(2). Suppose v3(3) ≥ v2(2).

Then, v3(3) = maxi∈N\{1} vi(i), and t1(R) = v3(3). By V1(2, (3, 0)) > v3(3) − v2(2),

(2, v3(3) − v2(2)) P1 (3, 0). By v3(3) ≥ V1(1, (3, 0)), (3, 0) R1 (1, v3(3)) = f1(R). Thus,

(2, v3(3) − v2(2)) P1 f1(R)), which contradicts (1). Suppose instead v2(2) ≥ v3(3). Then,

v2(2) = maxi∈N\{1} vi(i), and t2(R) = v2(2). By v2(2) ≥ v3(3) and v3(3) ≥ V1(1, (3, 0)),

v2(2) ≥ V1(3, 0), which implies (3, 0) R1 (1, v2(2)) = f1(R). By 2 ≻1 3, (2, 0) P1 (3, 0).

Thus, (2, v2(2)− v2(2)) = (2, 0) P1 f1(R), which contradicts (1).

Case 2. x(R) ∈ N\{1, 2} and x(R) ⪰1 2.

By inspection, one can find that the discussion in Case 2 of Lemma 19 does not depend

on the relationship between 2 and 3 according to ⪰1. Thus, by the same discussion as in

Case 2 of Lemma 19, we can derive a contradiction.

Case 3. x(R) ∈ N\{1, 2} and 2 ≻1 x(R) ⪰1 3.

Let i = x(R). Suppose v2(2) ≥ v3(3). Then, v2(2) = maxj∈N\{1} vj(j), and t1(R) =

v2(2)−vi(i) ≥ 0. Then, (2, v2(2)−v2(2)) = (2, 0) P1 (i, 0) R1 f1(R), where the first relation

follows from 2 ≻1 i, and the second one from t1(R) ≥ 0. However, this contradicts (1).

Next, suppose v3(3) ≥ v2(2). Then, v3(3) = maxj∈N\{1} vj(j), and so t1(R) = v3(3)− vi(i).

By v2(2) > τ2,i(R−2) = v3(3)−V1(2, (i, v3(3)−vi(i))), V1(2, (i, v3(3)−vi(i))) > v3(3)−v2(2).

Thus, (2, v3(3)− v2(2)) P1 (i, v3(3)− vi(i)) = f1(R), which contradicts (1).

Case 4. x(R) ∈ N\{1, 2} and 3 ≻1 x(R).

Let i = x(R). Suppose v2(2) ≥ v3(3). Then, v2(2) = maxj∈N\{1} vj(j), and t1(R) =

v2(2) − vi(i) ≥ 0. We have (2, v2(2) − v2(2)) = (2, 0) P1 (3, 0) P1 (i, 0) R1 f1(R), where

the first relation follows from 2 ≻1 3, the second one from 3 ≻1 i, and the third one

from t1(R) ≥ 0. However, this contradicts (1). Next, suppose v3(3) ≥ v2(2). Then,
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v3(3) = maxj∈N\{1} vj(j), and t1(R) = v3(3) − vi(i) ≥ 0. We have (3, v3(3) − v3(3)) =

(3, 0) P1 (i, 0) R1 f1(R), where the first relation follows from 3 ≻1 i, and the second one

from t1(R) ≥ 0. This contradicts (1).

Now, we complete the proof that agent 2 never benefits from misrepresenting his pref-

erences. Let R′
2 ∈ R2. If x(R) = x(R′

2, R−2), then t2(R) = t2(R
′
2, R−2). If x(R) = 2

and x(R′
2, R−2) ̸= 2, then t2(R

′
2, R−2) = 0, and so by Lemma 18 and R2 ∈ RI

2, we have

that f2(R) R2 f2(R
′
2, R−2). Suppose x(R) ̸= 2 and x(R′

2, R−2) = 2. Then, t2(R) = 0. By

Lemmas 19 and 20, v2(2) ≤ t2(R
′
2, R−2). Thus, by R2 ∈ RI

2, f2(R) R2 f2(R
′
2, R−2). ■

C.2 Proof of the “only if” part

We prove the “only if” part of Theorem 5. Let RN be rich.27 Let f = (x, t) be a rule on

RN satisfying efficiency, weak individual rationality, no subsidy for losers, and strategy-

proofness.

The following lemma states that an outcome bundle of agent 1 under the rule f coincides

with that under a generalized pivotal rule respecting agent 1.

Lemma 21. For each R ∈ RN with R−1 ∈ R+I
−1 ∩ RQ

−1,

f1(R) ∈ B
{(

i, max
j∈N\{1}

vj(j)− vi(i)
)
: i ∈ N\{1}

} ∪ {(
1, max

i∈N\{1}
vi(i)

)})
.

Proof. Let R ∈ RN . By Lemma 1, x(R) ̸= 0, i.e., x(R) ∈ N . Let i = x(R). For no-

tational convenience, let v1(1) = 0. By R−1 ∈ R+I
−1, Theorem 1 implies that t1(R) =

tf1(R−1; i) = maxx∈X
∑

j∈N\{1} vj(x) − vi(i) = maxj∈N\{1} vj(j) − vi(i).
28 Thus, we have

f1(R) ∈ {(j,maxk∈N{1} vk(k) − vj(j)) : j ∈ N}. By contradiction, suppose that there is

j ∈ N\{i} such that (j,maxk∈N{1} vk(k)− vj(j)) P1 f1(R). Thus,

V1(j, f1(R)) > max
k∈N\{1}

vk(k)− vj(j). (1)

27Because the lemmas in this section will be used to prove the impossibility theorems (Theorems 2, 3,

and 6), we do not assume that R−1 ⊆ R+I
−1 ∩ RQ

−1 in the following lemmas.
28Note that in Theorem 2, we do not assume that RN ∩ RQ

N is convex, and so we cannot apply Lemma 9
here to identity the payment of agent 1. Instead, we apply Theorem 1 to do so.
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If i = 1, then

t1(R)− V1(j, f1(R)) = max
k∈N\{1}

vk(k)− V1(j, f1(R)) < vj(j) = Vj(j, fj(R))− tj(R),

where the inequality follows from (1). This contradicts Lemma 2 (i). If i ̸= 1 and j ̸= 1,

then

(
t1(R)− V1(j, f1(R))

)
+
(
ti(R)− Vi(j, fi(R))

)
=

(
max

k∈N\{1}
vk(k)− vi(i)

)
−V1(j, f1(R)) + vi(i)

= max
k∈N\{1}

vk(k)− V1(j, f1(R)) < vj(j) = Vj(j, fj(R))− tj(R),

where the inequality follows from (1). This contradicts Lemma 2 (ii). Finally, if i ̸= 1 and

j = 1, then

t1(R)−V1(j, f1(R)) =
(

max
k∈N\{1}

vk(k)−vi(i)
)
−V1(j, f1(R)) < −vi(i) = Vi(j, fi(R))− ti(R),

where the inequality follows from (1). This contradicts Lemma 2 (iii).

In the following two lemmas, we will show that the payments of agents other than

agent 1 under a rule f coincide with those under a generalized pivotal rule respecting

agent 1. Note that by Lemma 4, for each i ∈ N\{1} and each R−i ∈ R−i, i ∈ Xf
i (R−i).

Lemma 22. Let i ∈ N\{1} and R−i ∈ R−i be such that R−1,i ∈ R+I
−1,i ∩ RQ

−1,i. Let

j ∈ N−1,i(R−i). If j ⪰1 i, then tfi (R−i; i) = max{V1(1, (2, 0)),maxk∈N\{1,i}:k⪰1i τi,k(R−i)}.

Proof. Without loss of generality, let i = 2 and j = 3. By contradiction, suppose 3 ⪰1 2,

but tf2(R−2; 2) ̸= max{V1(1, (2, 0)),maxi∈N\{1,2}:i⪰12 τ2,i(R−2)}. There are three cases.

Case 1. tf2(R−2; 2) < V1(1, (2, 0)).

LetR2 ∈ R0
2 ∩ RQ

2 be such that tf2(R−2; 2) < v2(2) < V1(1, (2, 0)). By v2(2) > tf2(R−2; 2),

Lemma 8 implies x(R) = 2.

First, suppose v3(3) < V1(1, (2, 0)). Then, without loss of generality, we can assume

v2(2) > v3(3). Then, v2(2) = maxi∈N\{1} vi(i). Theorem 1 implies that t1(R) = tf1(R−1; 2) =

maxx∈X
∑

i∈N\{1} vi(x)−v2(2) = v2(2)−v2(2) = 0. By v2(2) < V1(1, (2, 0)) = V1(1, f1(R)),

(1, v2(2)) P1 f1(R). This contradicts Lemma 21.
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Next, suppose v3(3) ≥ V1(1, (2, 0)). By V1(1, (2, 0)) > v2(2), we have v3(3) > v2(2).

Thus, v3(3) = maxi∈N\{1} vi(i). By R−1 ∈ R+I
−1, Theorem 1 implies t1(R) = tf1(R−1; 2) =

v3(3)− v2(2). By v3(3) > v2(2), t1(R) > 0. Thus, (2, 0) P1 (2, t1(R)) = f1(R). By 3 ⪰1 2,

(3, 0) R1 (2, 0). Thus, (3, v3(3)− v3(3)) = (3, 0) P1 f1(R), which contradicts Lemma 21.

Case 2. tf2(R−2; ; 2) < maxi∈N\{1,2}:i⪰12 τ2,i(R−2).

Then, there is i ∈ N\{1, 2} such that i ⪰1 2 and tf2(R−2; 2) < τ2,i(R−2). LetR2 ∈ R0
2 ∩ RQ

2

be such that tf2(R−2; 2) < v2(2) < τ2,i(R−2). By v2(2) > tf2(R−2; 2), Lemma 8 implies

x(R) = 2.

First, suppose that v3(3) − vi(i) < V1(i, (2, 0)). Then, τ2,i(R−2) = vi(i) + V1(i, (2, 0)).

By v3(3)− vi(i) < V1(i, (2, 0)), τ2,i(R−2) > v3(3). Thus, without loss of generality, we can

assume that v2(2) > v3(3). Thus, v2(2) = maxj∈N\{1} vj(j), and by R−1 ∈ R+I
−1, Theorem 1

implies t1(R) = tf1(R−1; 2) = v2(2) − v2(2) = 0. Thus, by v2(2) < vi(i) + V1(i, (2, 0)),

v2(2)− vi(i) < V1(i, (2, 0)) = V1(i, f1(R)). Thus, we have (i, v2(2)− vi(i)) P1 f1(R), which

contradicts Lemma 21.

Next, suppose that v3(3) − vi(i) ≥ V1(i, (2, 0)). Then, we have τ2,i(R−2) = v3(3) −

V1(2, (i, v3(3) − vi(i))). By v3(3) − vi(i) ≥ V1(i, (2, 0)), we have (2, 0) R1 (i, v3(3) − vi(i)),

which implies V1(2, (i, v3(3)−vi(i))) ≥ 0. Thus, by v2(2) < τ2,i(R−2), v2(2) < v3(3). Thus,

v3(3) = maxj∈N\{1} vj(j). By Theorem 1, t1(R) = tf1(R−1; 2) = v3(3) − v2(2). By

v2(2) < v3(3)−V1(2, (i, v3(3)−vi(i))), V1(2, (i, v3(3)−vi(i))) < v3(3)−v2(2), which implies

(i, v3(3)− vi(i)) P1 (2, v3(3)− v2(2)) = f1(R). This contradicts Lemma 21.

Case 3. tf2(R−2; 2) > max{V1(1, (2, 0)),maxi∈N\{1,2}:i⪰12 τ2,i(R−2)}.

Let R2 ∈ R0
2 ∩ RQ

2 be such that

max
{
V1(1, (2, 0)), max

i∈N\{1,2}:i⪰12
τ2,i(R−2)

}
< v2(2) < tf2(R−2; 2).

By 3 ⪰1 2, V1(3, (2, 0)) ≥ 0, and so we have v2(2) > τ2,3(R−2) = v3(3)+V1(3, (2, 0)) ≥ v3(3).
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Thus, v2(2) = maxi∈N\{1} vi(i), and by R−1 ∈ R+I
−1, Theorem 1 implies

t1(R) = tf1(R−1;x(R)) = v2(2)−
∑

i∈N\{1}

vi(x(R)) =

v2(2) if x(R) = 1,

v2(2)− vx(R)(x(R)) if x(R) ̸= 1.

(2)

. By v2(2) < tf2(R−2; 2), weak individual rationality implies x(R) ̸= 2. By Lemma 1,

x(R) ̸= 0. Thus, there are the following three cases.

First, suppose x(R) = 1. By (2), t1(R) = v2(2). By v2(2) > V1(1, (2, 0)), we have

(2, v2(2)− v2(2)) = (2, 0) P1 (1, v2(2)) = f1(R), which contradicts Lemma 21.

Next, suppose that x(R) ∈ N\{1, 2}, and x(R) ⪰1 2. Let i = x(R). First, we show

v2(2) − vi(i) > V1(i, (2, 0)). By contradiction, suppose v2(2) − vi(i) ≤ V1(i, (2, 0)). By

v3(3) < v2(2), v3(3)−vi(i) < v2(2)−vi(i) ≤ V1(i, (2, 0)). Thus, τ2,i(R−2) = vi(i)+V1(i, (2, 0)).

By v2(2) > τ2,i(R−2) = vi(i) + V1(i, (2, 0)), v2(2) − vi(i) > V1(i, (2, 0)), which contradicts

the assumption that v2(2) − vi(i) ≤ V1(i, (2, 0)). Thus, v2(2) − vi(i) > V1(i, (2, 0)). By

(2), t1(R) = v2(2) − vi(i). Thus, t1(R) > V1(i, (2, 0)), which implies (2, v2(2) − v2(2)) =

(2, 0) P1 (i, t1(R)) = f1(R). This contradicts Lemma 21.

Finally, suppose that x(R) ∈ N\{1, 2}, and 2 ≻1 x(R). Let i = x(R). By (2), t1(R) =

v2(2)− vi(i) ≥ 0. By 2 ≻1 i, (2, 0) P1 (i, 0). By t1(R) ≥ 0, (i, 0) R1 f1(R). Thus, we have

(2, v2(2)− v2(2)) = (2, 0) P1 f1(R), which contradicts Lemma 21.

Lemma 23. Let i ∈ N\{1} and R−i ∈ R−i be such that R−1,i ∈ R+I
−1,i ∩ RQ

−1,i. Let

j ∈ N−1,i(R−i). If i ≻1 j, then tfi (R−i; i) = max{τi,1(R−i),maxk∈N\{1,i}:k⪰1j τi,k(R−i)}.

Proof. Without loss of generality, let i = 2 and j = 3. Suppose by contradiction that

2 ≻1 3, but tf2(R−2; 2) ̸= max{τ2,1(R−2),maxi∈N\{1,2}:i⪰13 τ2,i(R−2)}. There are three cases.

Case 1. tf2(R−2; 2) < τ2,1(R−2).

Let R2 ∈ R0
2 ∩ RQ

2 be such that tf2(R−2; 2) < v2(2) < τ2,1(R−2). By v2(2) > tf2(R−2; 2),

Lemma 8 implies x(R) = 2.

First, suppose v3(3) < V1(1, (2, 0)). Then, τ2,1(R−2) = V1(1, (2, 0)). Thus, we have

v2(2) < τ2,1(R−2) = V1(1, (2, 0)), and so we can derive a contradiction to Lemma 21 by the

same discussion as in Case 1 of Lemma 22.

Next, suppose v3(3) ≥ V1(1, (2, 0)). Then, τ2,1(R−2) = v3(3)−V1(2, (1,min{v3(3), V1(1, (3, 0))})).
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Suppose v2(2) > v3(3). Then, v2(2) = maxi∈N\{1} vi(i), and so by Theorem 1, we have

t1(R) = tf1(R−1; 2) = maxx∈X
∑

i∈N\{1} vi(i)− v2(2) = v2(2)− v2(2) = 0. By v2(2) > v3(3)

and v3(3) ≥ V1(1, (2, 0)), v2(2) > V1(1, (2, 0)) = V1(1, f1(R)). Thus, (1, v2(2)) P1 f1(R),

which contradicts Lemma 21. Suppose v3(3) ≥ v2(2). Then, v3(3) = maxi∈N\{1} vi(i),

and by Theorem 1, t1(R) = tf1(R−1; 2) = v3(3) − v2(2). By v2(2) > τ2,1(R−2) = v3(3) −

V1(2, (1,min{v3(3), V1(1, (3, 0))})), V1(2, (1,min{v3(3), V1(1, (3, 0))})) > v3(3)−v2(2) = t1(R).

By v3(3) ≥ min{v3(3), V1(1, (3, 0))}, V1(2, (1, v3(3))) ≥ V1(2, (1,min{v3(3), V1(1, (3, 0))})).

Thus, V1(2, (1, v3(3))) > t1(R), which implies (1, v3(3)) P1 f1(R). This contradicts Lemma 21.

Case 2. tf2(R−2; 2) < maxi∈N\{1,2};i⪰13 τ2,i(R−2).

Then, there is i ∈ N\{1, 2} such that i ⪰1 3 and tf2(R−2; 2) < τ2,i(R−2). If i ⪰1 2,

then we can derive a contradiction as in the proof of Case 2 of Lemma 22. Thus, assume

2 ≻1 i ⪰1 3. Then, τ2,i(R−2) = v3(3) − V1(2, (i, v3(3) − vi(i))). Let R2 ∈ R0
2 ∩ RQ

2 be

such that tf2(R−2; 2) < v2(2) < τ1,2(R−2). Then, by v2(2) > tf2(R−2; 2), Lemma 8 implies

x(R) = 2. By 2 ≻1 i, (2, 0) P1 (i, 0). By v3(3) ≥ vi(i), (i, 0) R1 (i, v3(3) − vi(i)). Thus,

(2, 0) P1 (i, v3(3)−vi(i)), which implies V1(2, (i, v3(3)−vi(i))) > 0. Thus, by v2(2) < τ2,i(R−2),

v2(2) < v3(3). Thus, v3(3) = maxj∈N\{1} vj(j), and so by Theorem 1, we have t1(R) =

tf1(R−1; 2) = v2(2)− vi(i). By v2(2) < τ2,i(R−2) = v3(3)− V1(2, (i, v3(3)− vi(i))), we have

V1(2, (i, v3(3) − vi(i))) < v3(3) − v2(2) = t1(R), which implies (i, v3(3) − vi(i)) P1 f1(R).

This contradicts Lemma 21.

Case 3. tf2(R−2; 2) > max{τ2,1(R−2),maxi∈N\{1,2}:i⪰13 τ2,i(R−2)}.

Let R2 ∈ R0
2 ∩ RQ

2 be such that

max
{
τ2,1(R−2), max

i∈N\{1,2}:i⪰13
τ2,i(R−2)

}
< v2(2) < tf2(R−2; 2).

By 2 ≻1 3, τ2,3(R−2) = v3(3)− V1(2, (3, 0)). By v2(2) < tf2(R−2; 2), weak individual ratio-

nality implies that x(R) ̸= 2. Also, by Lemma 1, x(R) ̸= 0.

First, suppose x(R) = 1. Suppose v2(2) ≥ v3(3). Then, v2(2) = maxi∈N\{1} vi(i), and

by Theorem 1, t1(R) = tf1(R−1; 1) = maxi∈N\{1} vi(i) = v2(2). If v3(3) ≤ V1(1, (2, 0)), then

τ2,1(R−2) = V1(1, (2, 0)). Thus, by v2(2) > τ2,1(R−2), we have v2(2) > V1(1, (2, 0)). Instead,
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if v3(3) > V1(1, (2, 0)), then by v2(2) ≥ v3(3), v2(2) > V1(1, (2, 0)). Thus, in either case,

we have v2(2) > V1(1, (2, 0)), which implies (2, v2(2)−v2(2)) = (2, 0) P1 (1, v2(2)) = f1(R).

This contradicts Lemma 21. Then, suppose v3(3) ≥ v2(2). Then, v3(3) = maxi∈N\{1} vi(i).

By Theorem 1, t1(R) = tf1(R−1; 1) = v3(3). We claim v3(3) > V1(1, (2, 0)). Indeed,

if v3(3) ≤ V1(1, (2, 0)), then τ2,1(R−2) = V1(1, (2, 0)). Thus, by v2(2) > τ2,1(R−2) and

V1(1, (2, 0)) ≥ v3(3), v2(2) > v3(3), which contradicts the assumption that v3(3) ≥ v2(2).

Thus, v3(3) > V1(1, (2, 0)), and so τ2,1(R−2) = v3(3) − V1(2, (1,min{v3(3), V1(1, (3, 0))})).

By v2(2) > τ2,1(R−2), we have V1(2, (1,min{v3(3), V1(1, (3, 0))})) > v3(3) − v2(2). Also,

by v3(3) ≥ min{v3(3), V1(1, (3, 0))}, V1(2, (1, v3(3))) ≥ V1(2, (1,min{v3(3), V1(1, (3, 0))})).

Combining these, we get V1(2, f1(R)) = V1(2, (1, v3(3))) > v3(3) − v2(2), which implies

(2, v3(3)− v2(2)) P1 f1(R). This contradicts Lemma 21.

Next, suppose that x(R) ∈ N\{1, 2} and x(R) ⪰1 2. Let i = x(R). If v2(2) > v3(3),

then by the same discussion as in the case where x(R) ∈ N\{1, 2} and x(R) ⪰1 2 in Case 3

of Lemma 22, we can derive a contradiction to Lemma 21. Then, suppose v3(3) ≥ v2(2).

Then, v3(3) = maxj∈N\{1} vj(j), and so by Theorem 1, t1(R) = tf1(R−1; i) = v3(3) − vi(i).

We claim v3(3)−vi(i) > V1(i, (2, 0)). By contradiction, suppose v3(3)−vi(i) ≤ V1(i, (2, 0)).

Then, τ2,i(R−2) = vi(i) + V1(i, (2, 0)). By v2(2) > τ2,i(R−2), v2(2) − vi(i) > V1(i, (2, 0)).

Thus, by V1(i, (2, 0)) ≥ v3(3)−vi(i), v2(2)−vi(i) > v3(3)−vi(i), which implies v2(2) > v3(3).

This contradicts v3(3) ≥ v2(2). Thus, v3(3)−vi(i) > V1(i, (2, 0)). Then, τ2,i(R−2) = v3(3)−

V1(2, (i, v3(3)− vi(i))) = v3(3)−V1(2, f1(R)). By v2(2) > τ2,i(R−2), V1(2, f1(R)) > v3(3)−

v2(2), which implies (2, v3(3)− v2(2)) P1 f1(R). This contradicts Lemma 21.

Finally, suppose that x(R) ∈ N\{1, 2} and 2 ≻1 x(R). Let i = x(R). By 2 ≻1 i,

τ2,i(R−2) = v3(3) − V1(2, (i, v3(3) − vi(i))). If v2(2) > v3(3), then by the same discussion

as in the case where x(R) ∈ N\{1, 2} and 2 ≻1 x(R) in Case 3 of Lemma 22, we can

derive a contradiction. Thus, suppose v3(3) ≥ v2(2). Then, v3(3) = maxj∈N\{1} vj(j).

Thus, by Theorem 1, t1(R) = tf1(R−1; i) = v3(3) − vi(i). By v2(2) > τ2,i(R−2), we have

V1(2, (i, v3(3)−vi(i))) > v3(3)−v2(2). Thus, (2, v3(3)−v2(2)) P1 (i, v3(3)−vi(i)) = f1(R),

which contradicts Lemma 21.

Now, we complete the proof of the “only if” part of Theorem 5. SupposeR−1 ⊆ R+I
−1 ∩ RQ

−1.

Let R ∈ RN . By Lemma 21, an outcome bundle f1(R) of agent 1 for R under f is equivalent

to that under a generalized pivotal rule respecting agent 1. Let i ∈ N\{1}. If x(R) = i,

then by Lemmas 22 and 23, ti(R) = tfi (R−i; i) is equivalent to the payment of agent i
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for R under a generalized pivotal rule respecting agent 1. If x(R) ̸= i, then by Ri ∈ RI
i ,

Lemma 6 implies ti(R) = 0. Thus, f is a generalized pivotal rule respecting agent 1. ■

Part II

Proofs of Impossibility Theorems

In the second part, we prove the impossibility theorems (Theorems 2, 3, and 6).

D Proof of Theorem 2

In this section, we prove Theorem 2. Without loss of generality, let i = 1. Suppose by

contradiction that there is rule f = (x, t) on RN satisfying efficiency, weak individual

rationality, no subsidy for losers, and strategy-proofness.

By R1 ̸∈ RI , there is a pair i, j ∈ N\{1} such that (i, 0) P1 (j, 0). Without loss of gen-

erality, let i = 2 and j = 3. Let R3 ∈ R0
3 ∩ RQ

3 be such that v3(3) = V1(1, (3, 0)). By desir-

ability of own consumption of R1, for each i ∈ N\{1}, v3(3) = V1(1, (3, 0)) > V1(i, (3, 0)).

Also, for each i ∈ N\{1}, by 2 ≻1 3, V1(i, (3, 0)) > V1(i, (2, 0)), and so v3(3) > V1(i, (2, 0)).

If n ≥ 4, then for each i ∈ N\{1, 2, 3}, let Ri ∈ R0
i ∩ RQ

i be a preference such that

vi(i) < min{v3(3), v3(3)− V1(i, (2, 0)), v3(3)− V1(i, (3, 0))}. By Lemma 4, 2 ∈ Xf
2 (R−2).

By 2 ≻1 3 and v3(3) = V1(1, (3, 0)), τ2,1(R−2) = v3(3)−V1(2, (3, 0)). For each i ∈ N\{1, 2, 3}

with i ⪰1 2, by vi(i) < v3(3) − V1(i, (2, 0)), τ2,i(R−2) = v3(3) − V1(2, (i, v3(3) − vi(i))).

Thus, for each i ∈ N\{1, 2, 3}, τ2,i(R−2) = v3(3) − V1(2, (i, v3(3) − vi(i))). For each

i ∈ N\{1, 2, 3}, by vi(i) < v3(3) − V1(i, (3, 0)), (3, 0) P1 (i, v3(3) − vi(i)), which implies

V1(2, (i, v3(3) − vi(i))) > V1(2, (3, 0)). Thus, for each i ∈ N\{1, 2, 3}, τ2,1(R−2) = v3(3) −

V1(2, (3, 0)) > v3(3) − V1(2, (i, v3(3) − vi(i))) = τ2,i(R−2). Thus, by 2 ≻1 3, Lemma 23

implies that tf2(R−2; 2) = τ2,1(R−2) = v3(3)− V1(2, (3, 0)) = v3(3)− V1(2, (1, v3(3))).

By R1 ∈ RPIE
1 ∪ RNIE

1 , either R1 ∈ RPIE
1 or R1 ∈ RNIE

1 . Thus, there are two cases.

Case 1. R1 ∈ RPIE
1 .

By (2, 0) P1 (3, 0), V1(1, (2, 0)) < V1(1, (3, 0)) = v3(3). Thus, by R1 ∈ RPIE
1 , we have
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V1(1, (2, 0)) > v3(3)−V1(2, (1, v3(3))) = tf2(R−2; 2).
29 Thus, we can choose ε ∈ R such that

0 < ε < V1(1, (2, 0))− tf2(R−2; 2). (1)

Let R2 ∈ R0
2 be a preference such that V2(2, (x2(R2), 2)) > max{v3(3), tf2(R−2; 0)}, and

V2(1, z
f
2 (R−2; 2)) = −ε. By V2(2, (x2(R2), 0)) > tf2(R−2; 2), Lemma 8 implies x(R) = 2.

Thus, we have t2(R) = tf2(R−2; 2) = v3(3)− V1(2, (1, v3(3))). By V2(2, (x2(R2), 0)) > v3(3)

and v3(3) > maxi∈N\{1,2,3} vi(i), we have V2(2, (x2(R2), 0)) > maxi∈N\{1,2} vi(i). Then, by

R−1 ∈ R0
−1, Theorem 1 implies t1(R) = tf1(R−1; 2) = maxx∈X

∑
i∈N\{1} Vi(x, (xi(Ri), 0))−∑

i∈N{1} Vi(2, (xi(Ri), 0)) = V2(2, (x2(R2), 0))− V2(2, (x2(R2), 0)) = 0. Then,

(
t1(R)− V1(1, f1(R))

)
+
(
t2(R)− V2(1, f2(R))

)
= −V1(1, (2, 0)) + tf2(R−2; 2) + ε < 0,

where the equality follows from f1(R) = (2, 0) and V2(1, f2(R)) = −ε, and the inequality

from (1). This contradicts Lemma 2 (iii).

Case 2. R1 ∈ RNIE
1 .

By (2, 0) P1 (3, 0), V1(2, (3, 0)) > 0. Thus, by R1 ∈ RNIE
1 , we have −V1(3, (2, 0)) =

0− V1(3, (2, 0)) < V1(2, (3, 0)).
30 Thus, we can choose δ ∈ R such that

0 < δ < V1(2, (3, 0))−
(
−V1(3, (2, 0))

)
= V1(2, (3, 0)) + V1(3, (2, 0)). (2)

Let R2 ∈ R0
2 be a preference such that V2(2, (x2(R2), 2)) > max{v3(3), tf2(R−2; 2)}, and

V2(3, z
f
2 (R−2; 2)) = −δ. By V2(2, (x2(R2), 0)) > tf2(R−2; 2), Lemma 8 implies x(R) = 2.

Thus, f2(R) = zf2 (R−2; 2). By V2(2, (x2(R2), 0)) > v3(3) and v3(3) > maxi∈N\{1,2,3} vi(i),

we have that V2(2, (x2(R2), 0)) > maxi∈N\{1,2} vi(i). By R−1 ∈ R0
−1, Theorem 1 implies

that t1(R) = tf1(R−1; 2) = V2(2, (x2(R2), 0))− V2(2, (x2(R2), 0)) = 0. Then,

(
t1(R)− V1(3, f1(R))

)
+
(
t2(R)− V2(3, f2(R))

)
= −V1(3, (2, 0)) +

(
v3(3)− V1(2, (3, 0))

)
+δ

< v3(3) = V3(3, f3(R))− t3(R),

29Note that V1(2, (1, V1(1, (2, 0)))) = 0.
30Note that V1(3, (2, V1(2, (3, 0)))) = 0.
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where the first equality follows from f1(R) = (2, 0), t2(R) = v3(3) − V1(2, (3, 0)), and

V2(3, f2(R)) = −δ, and the inequality from (2). This contradicts Lemma 2 (ii). ■

E Proof of Theorem 3

In this section, we prove Theorem 3. Without loss of generality, let i = 1 and j =

2. By contradiction, suppose that there is a rule g on RN satisfying efficiency, weak

individual rationality, no subsidy for losers, and strategy-proofness. Let f = (x, t) denote

the restriction of g to ((R0
1 ∩ RQ

1 ) ∪ {R1}) × (R−I
2 ∩ RQ

2 ) × (R0
−1,2 ∩ RQ

−1,2). Then, f

satisfies the four properties. Note that the intersection of the domain of f and the quasi-

linear domain RN is convex.

By desirability of own consumption ofR1, for each i ∈ N\{1}, V1(1, (2, 0)) > V1(i, (2, 0)).

Let w ∈ R++ be such that for each i ∈ N\{1}, w < min{V1(1, (2, 0))−V1(i, (2, 0)), V1(1, (2, 0))}.

If n ≥ 3, then for each i ∈ N\{1, 2}, let Ri ∈ R0
i ∩ RQ

i be such that vi(i) = w. By

Lemma 4, 2 ∈ Xf
2 (R−2). Let i ∈ N−1,2(R−2). By vi(i) < V1(1, (2, 0)), τ2,1(R−2) = V1(1, (2, 0)).

For each j ∈ N\{1, 2} with j ⪰1 2, by vj(j) < V1(1, (2, 0)) − V1(j, (2, 0)), τ2,j(R−2) =

vj(j)+V1(j, (2, 0)) < V1(1, (2, 0)) = τ2,1(R−2). For each j ∈ N\{1, 2} with 2 ≻1 j, τ2,j(R−j) =

vj(j) − V1(2, (j, 0)) < vj(j) < V1(1, (2, 0)) = τ2,1(R−2), where the first inequality follows

from 2 ≻1 j. Thus, by Lemmas 22 and 23, tf2(R−2; 2) = τ2,1(R−2) = V1(1, (2, 0)).

The following lemma states that given R−2 as above, the rule f selects the object

allocation 0 for some preference of agent 2.

Lemma 24. We have 0 ∈ Xf
2 (R−2).

Proof. By R1 ∈ R−−, V1(0, (2, 0)) > 0. Thus, we can choose R2 ∈ R−I
2 ∩ RQ

2 such that

v2(2) > V1(1, (2, 0)), v2(2)−v2(0) < V1(0, (2, 0)), and for each x ∈ X\{0, 2}, v2(x) = 0. By

v2(2) > V1(1, (2, 0)) = tf2(R−2; 2) and no subsidy for losers, for each x ∈ Xf
2 (R−2)\{0, 2},

v2(2)− tf2(R−2; 2) > 0 ≥ v2(x)− tf2(R−2;x). Thus, by Lemma 3, x(R) ∈ {0, 2}. We show

x(R) = 0. By contradiction, suppose x(R) = 2.

By v2(2) > V1(1, (2, 0)) and V1(1, (2, 0)) > maxi∈N\{1,2} vi(i), v2(2) > maxi∈N\{1,2} vi(i).

Thus, by Lemma 9, t1(R) = tf1(R−1; 2) = maxx∈X
∑

i∈N\{1} vi(x)−v2(2) = v2(2)−v2(2) = 0.
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Let x = 0. Then,

∑
i∈N

(
Vi(x, fi(R))− Vi(x(R), fi(R))

)
=

(
V1(0, f1(R))− t1(R)

)
−(v2(2)− v2(0))

= V1(0, (2, 0))− (v2(2)− v2(0)) > 0,

where the first equality follows from R−1,2 ∈ R0
−1,2, the second one from f1(R) = (2, 0), and

the inequality from v2(2) − v2(0) < V1(0, (2, 0)). However, by Remark 1, this contradicts

efficiency.

By Lemma 24, tf2(R−2; 0) is well-defined. Given R−2, the following lemma identifies the

payment of agent 2 when f selects the object allocation 0.

Lemma 25. We have tf2(R−2; 0) = V1(1, (2, 0))− V1(0, (2, 0)).

Proof. By contradiction, suppose tf2(R−2; 0) ̸= V1(1, (2, 0)) − V1(0, (2, 0)). There are two

cases.

Case 1. tf2(R−2; 0) < V1(1, (2, 0))− V1(0, (2, 0)).

ByR1 ∈ R−−
1 , V1(0, (2, 0)) > 0. Thus, we can chooseR2 ∈ R−I

2 ∩ RQ
2 such that v2(2) =

V1(1, (2, 0)),

tf2(R−2; 0) < v2(0) < V1(1, (2, 0))− V1(0, (2, 0)),

and for each x ∈ X\{0, 2}, v2(x) = 0. By v2(0) > tf2(R−2; 0) and tf2(R−2; 2) = V1(1, (2, 0)) =

v2(2), v2(0)−tf2(R−2; 0) > 0 = v2(2)−tf2(R−2; 2). For each x ∈ Xf
2 (R−2)\{0, 2}, by no sub-

sidy for losers, v2(2)− tf2(R−2; 2) = 0 ≥ v2(x)− tf2(R−2;x). Thus, by Lemma 3, x(R) = 0.

Note that v2(2) = V1(1, (2, 0)) > maxi∈N\{1,2} vi(i). Thus, by Lemma 9, t1(R) =

tf1(R−1; 0) = maxx∈X
∑

i∈N vi(x) − v2(0) = v2(2) − v2(0) = V1(1, (2, 0)) − v2(0). By

v2(0) < V1(1, (2, 0)) − V1(0, (2, 0)), t1(R) = V1(1, (2, 0)) − v2(0) > V1(0, (2, 0)), which im-

plies (2, 0) P1 f1(R). By Lemma 10, there is R′
1 ∈ R1 such that f1(R

′
1, R−1) = (2, 0). Thus,

f1(R
′
1, R−1) P1 f1(R), which contradicts strategy-proofness.

Case 2. tf2(R−2; 0) > V1(1, (2, 0))− V1(0, (2, 0)).
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By desirability of own consumption ofR1, V1(1, (2, 0)) > 0. Thus, by tf2(R−2; 0) > V1(1, (2, 0))−

V1(0, (2, 0)), we can choose δ ∈ R++ such that δ < V1(1, (2, 0)), and

2δ < tf2(R−2; 0)−
(
V1(1, (2, 0))− V1(0, (2, 0))

)
. (1)

LetR2 ∈ R−I
2 ∩ RQ

2 be such that v2(2) = V1(1, (2, 0))+δ, v2(0) = V1(1, (2, 0))−V1(0, (2, 0))+

2δ, and for each x ∈ X\{0, 2}, v2(x) = 0. Note that by δ < V1(1, (2, 0)), R2 ∈ R−
2 . By

(1), v2(2) − tf2(R−2; 2) = δ > 0 > v2(0) − tf2(R−2; 0), For each x ∈ Xf
2 (R−2)\{0, 2}, by no

subsidy for losers, v2(2)−tf2(R−2; 2) = δ > 0 ≥ v2(x)−tf2(R−2;x). By Lemma 3, x(R) = 2.

By V1(1, (2, 0)) > maxi∈N\{1,2} vi(i), v2(2) = V1(1, (2, 0))+δ > maxi∈N\{1,2} vi(i). Thus,

by Lemma 9, t1(R) = tf1(R−1; 2) = v2(2)− v2(2) = 0. Let x = 0. Then,

∑
i∈N

(
Vi(x, fi(R))− Vi(x(R), fi(R))

)
=

(
V1(0, f1(R))− t1(R)

)
−(v2(2)− v2(0))

= V1(0, (2, 0))−
(
V1(0, (2, 0))− δ

)
= δ > 0,

where the first equality follows from R−1,2 ∈ R0
−1,2, and the second one from f1(R) = (2, 0).

By Remark 1, this contradicts efficiency.

By R1 ∈ R−−, (0, 0) P1 (2, 0), which implies V1(1, (0, 0)) < V1(1, (2, 0)). Recall that for

each i ∈ N\{1, 2}, vi(i) = w < min{V1(1, (2, 0))−V1(i, (2, 0)), V1(1, (2, 0))}. Thus, we can

choose v ∈ R++ such that

max
{
V1(1, (0, 0)), max

i∈N\{1,2}
vi(i), max

i∈N\{1,2}

(
vi(i) + V1(i, (2, 0))

)}
< v < V1(1, (2, 0)). (2)

By R1 ∈ RPIE
1 ∪ RNIE

1 , either R1 ∈ RPIE
1 or R1 ∈ RNIE

1 . Thus, there are two cases.

Case 1. R1 ∈ RPIE
1 .

By (2), v < V1(1, (2, 0)). Thus, byR1 ∈ RPIE
1 , v−V1(0, (1, v)) > V1(1, (2, 0))−V1(0, (2, 0)).

31

Thus, we can choose R2 ∈ R−I
2 ∩ RQ

2 such that v2(2) = v,

V1(1, (2, 0))− V1(0, (2, 0)) < v2(0) < v − V1(0, (1, v)), (3)

31Note that V1(0, (1, V1(1, (2, 0)))) = V1(0, (2, 0)).
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and for each x ∈ X\{0, 2}, v2(x) = 0.32 For each x ∈ Xf
2 (R−2)\{0, 2}, v2(0)−tf2(R−2; 0) =

v2(0)−(V1(1, (2, 0))−V1(0, (2, 0))) > 0 ≥ v2(x)−tf2(R−2;x), where the equality follows from

Lemma 25, the first inequality from (3), and the last one from no subsidy for losers. Also,

v2(0)− tf2(R−2; 0) > 0 > v− V1(1, (2, 0)) = v2(2)− tf2(R−2; 2), where the second inequality

follows from (2). Thus, by Lemma 3, x(R) = 0.

By (2), v2(2) = v > maxi∈N\{1,2} vi(i). Thus, by Lemma 9, t1(R) = tf1(R−1; 0) =

v2(2) − v2(0). By (3), t1(R) = v2(2) − v2(0) = v − v2(0) > V1(0, (1, v)), which implies

(1, v) P1 f1(R). By Lemma 4, there is R′
1 ∈ R0

1 ∩ RQ
1 such that x(R′

1, R−1) = 1. By

Lemma 9, t1(R
′
1, R−1) = tf1(R−1; 1) = v2(2). Thus, f1(R

′
1, R−1) = (1, v2(2)) = (1, v). By

(1, v) P1 f1(R), f1(R
′
1, R−1) P1 f1(R), which contradicts strategy-proofness.

Case 2. R1 ∈ RNIE
1 .

By (2), v < V1(1, (2, 0)). Thus, byR1 ∈ RNIE
1 , v−V1(0, (1, v)) < V1(1, (2, 0))−V1(0, (2, 0)).

33

Let R2 ∈ R−I
2 ∩ RQ

2 be such that v2(2) = v,

v − V1(0, (1, v)) < v2(0) < min
{
V1(1, (2, 0))− V1(0, (2, 0)), v

}
, (4)

and for each x ∈ X\{0, 2}, v2(x) = 0. Then, we have v2(0) − tf2(R−2; 0) = v2(0) −

(V1(1, (2, 0)) − V1(0, (2, 0))) < 0, where the equality follows from Lemma 25, and the in-

equality from (4). We also have v2(2) − tf2(R−2; 2) = v − V1(1, (2, 0)) < 0, where the

inequality follows from (2). Thus, by weak individual rationality, x(R) ∈ X\{0, 2}.

By v2(2) = v > maxi∈N\{1,2} vi(i), Lemma 9 implies that

t1(R) = tf1(R−1;x(R)) = max
x∈X

∑
i∈N\{1}

vi(x)−
∑

i∈N\{1}

vi(x(R)) = v2(2)−
∑

i∈N\{1}

vi(x(R)). (5)

First, suppose x(R) = 1. By (5), t1(R) = v2(2) = v. Let x = 0. Then,

∑
i∈N

(
Vi(x, fi(R))− Vi(x(R), fi(R))

)
= v2(0)−

(
t1(R)− V1(0, f1(R))

)
= v2(0)−

(
v − V1(0, (1, v))

)
> 0,

32By v > V1(1, (0, 0)), (0, 0) P1 (1, v). This implies V1(0, (1, v)) > 0. Thus, by (3), v2(0) < v, and so R2

satisfies desirability of own consumption.
33Note that V1(0, (1, V1(1, (2, 0)))) = V1(0, (2, 0)).
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where the first equality follows from R−1,2 ∈ R0
−1,2, the second one from f1(R) = (1, v),

and the inequality from (4). By Remark 1, this contradicts efficiency.

Next, suppose x(R) ∈ N\{1, 2}. Let i = x(R). By (5), t1(R) = v2(2)−vi(i) = v−vi(i).

By (2), t1(R) > V1(i, (2, 0)), which implies (2, 0) P1 f1(R). By Lemma 10, there is R′
1 ∈ R1

such that f1(R
′
1, R−1) = (2, 0). Thus, we have f1(R

′
1, R−1) P1 f1(R), which contradicts

strategy-proofness. ■

F Proof of Theorem 6

In this section, we prove Theorem 6. By Ri ̸∈ RI
i , there is k ∈ N\{i, j} such that either

(j, 0) Pi (k, 0) or (k, 0) Pi (j, 0), i.e., either j ≻i k or k ≻i j. Without loss of generality, let

i = 1, j = 2, and k = 3. By contradiction, suppose that there is a rule g onRN satisfying ef-

ficiency, weak individual rationality, no subsidy for losers, and strategy-proofness. Let f =

(x, t) denote the restriction of g to ((R0
1 ∩ RQ

1 ) ∪ {R1}) × (R+
2 ∩ RQ

2 ) × (R0
−1,2 ∩ RQ

−1,2).

Then, f satisfies the four properties. Note that the intersection of the domain of f and

the quasi-linear domain RN is convex.

We begin with the following lemma which states that given R−2, the rule f selects the

object allocation 1 for some preference of agent 2.

Lemma 26. For each R−1,2 ∈ R0
−1,2 ∩ RQ

−1,2, we have 1 ∈ Xf
2 (R−2).

Proof. Let R−1,2 ∈ R0
−1,2 ∩ RQ

−1,2. Let R2 ∈ R+
2 ∩ RQ

2 be such that for each i ∈ N\{1, 2},

v2(2) > vi(i)+V1(i, (x1(R1), 0)) and v2(2)−v2(1) < V1(1, (2, 0)), and for each x ∈ X\{1, 2},

v2(x) = 0. Note that by desirability of own consumption of R1, V1(1, (2, 0)) > 0, and so

we can choose such R2. Note also that for each i ∈ N\{1, 2}, by (i, 0) R1 (x1(R1), 0),

V1(i, x1(R1), 0) ≥ 0, and so v2(2) > vi(i). To show 1 ∈ Xf
2 (R−2), it suffices to show that

x(R) = 1. By contradiction, suppose not. Note that by Lemma 1, x(R) ̸= 0.

First, suppose x(R) = 2. By Lemma 9 and v2(2) > maxi∈N\{1,2} vi(i), we have t1(R) =

maxx∈X
∑

i∈N\{1} vi(x)− v2(2) = v2(2)− v2(2) = 0. Then,

(
t1(R)− V1(1, f1(R))

)
+
(
t2(R)− V2(1, f2(R))

)
= −V1(1, (2, 0)) + (v2(2)− v2(1)) < 0,

where the equality follows from f1(R) = (2, 0), and the inequality from v2(2)−v2(1) < V1(1, (2, 0)).

This contradicts Lemma 2 (iii).
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Next, suppose x(R) = i for some i ∈ N\{1, 2}. By Lemma 9 and v2(2) > maxi∈N\{1,2} vi(i),

t1(R) = v2(2)−vi(i). By v2(2) > vi(i)+V1(i, (x1(R1), 0)), t1(R) = v2(2)−vi(i) > V1(i, (x1(R1), 0)),

which implies (x1(R1), 0) P1 f1(R). This contradicts weak individual rationality.

Recall that either 2 ≻1 3 or 3 ≻1 2. The proof consists of two parts. In the first part,

we consider the case where 2 ≻1 3, and in the second one, we do the other case.

Part 1. Suppose 2 ≻1 3. Let R3 ∈ R0
3 ∩ RQ

3 be a preference such that for each i ∈ N\{3},

v3(3) > max{V1(i, (2, 0)), V1(i, (3, 0))}. If n ≥ 4, then for each i ∈ N\{1, 2, 3}, letRi ∈ R0
i ∩ RQ

i

be a preference such that vi(i) < min{v3(3), v3(3)− V1(i, (2, 0)), v3(3)− V1(i, (3, 0))}.

By v3(3) > maxi∈N\{1,2,3} vi(3), 3 ∈ N−1,2(R−2). By 2 ≻1 3 and v3(3) > V1(1, (3, 0)),

τ2,1(R−2) = v3(3)− V1(2, (3, 0)). For each i ∈ N\{1, 2, 3} with i ⪰1 2, τ2,i(R−2) = v3(3)−

V1(2, (i, v3(3) − vi(i))) < v3(3) − V1(2, (3, 0)), where both the equality and the inequal-

ity follow from vi(i) < v3(3) − V1(i, (3, 0)). For each i ∈ N\{1, 2, 3} with 2 ≻1 i ⪰1 3,

τ2,i(R−2) = v3(3)− V1(2, (i, v3(3)− vi(i))) < v3(3)− V1(2, (3, 0)), where the inequality fol-

lows from vi(i) < v3(3) − V1(i, (3, 0)). Thus, by 2 ≻1 3, Lemma 23 implies tf2(R−2; 2) =

v3(3)− V1(2, (3, 0)).

By Lemma 26, 1 ∈ Xf
2 (R−2). We show the following lemma which identifies the pay-

ment of agent 2 given R−2 under the rule f when it selects the object allocation 1.

Lemma 27. We have tf2(R−2; 1) = v3(3)− V1(1, (3, 0)).

Proof. Suppose by contradiction that tf2(R−2; 1) ̸= v3(3)−V1(1, (3, 0)). There are two cases.

Case 1. tf2(R−2; 1) < v3(3)− V1(1, (3, 0)).

Let R2 ∈ R+
2 ∩ RQ

2 be a preference such that v2(2) < v3(3)−V1(2, (3, 0)) = tf2(R−2; 2),

tf2(R−2; 1) < v2(1) < v3(3) − V1(1, (3, 0)), and for each x ∈ X\{1, 2}, v2(x) = 0. By

v2(1) > tf2(R−2; 1) and v2(2) < tf2(R−2; 2), v2(1)− tf2(R−2; 1) > 0 > v2(2)− tf2(R−2; 2). For

each x ∈ Xf
2 (R−2)\{1, 2}, by no subsidy for losers, 0 ≥ v2(x) − tf2(R−2;x). Thus, by

Lemma 3, x(R) = 1. By v2(2) < v3(3)− V1(2, (3, 0)) and 2 ≻1 3, v2(2) < v3(3). Thus, by

v3(3) > maxi∈N\{1,2,3} vi(i), Lemma 9 implies t1(R) = tf1(R−1; 1) = maxx∈X
∑

i∈N\{1} vi(x)−

v2(1) = v3(3)− v2(1). By v2(1) < v3(3)− V1(1, (3, 0)), V1(1, (3, 0)) < t1(R), which implies

(3, 0) P1 f1(R). By Lemma 10, there is R′
1 ∈ R0

1 ∩ RQ
1 such that f1(R

′
1, R−1) = (3, 0).
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Thus, f1(R
′
1, R−1) P1 f1(R), which contradicts strategy-proofness.

Case 2. tf2(R−2; 1) > v3(3)− V1(1, (3, 0)).

Let R2 ∈ R+
2 ∩ RQ

2 be a preference such that v2(2) < v3(3)−V1(2, (3, 0)) = tf2(R−2; 2),

v3(3) − V1(1, (3, 0)) < v2(1) < tf2(R−2; 1), and for each x ∈ X\{1, 2}, v2(x) = 0. By

v2(1) < tf2(R−2; 1), 0 > v2(1) − tf2(R−2; 1). By v2(2) < tf2(R−2; 2), 0 > v2(2) − tf2(R−2; 2).

Thus, by weak indiviudal rationality, x(R) ∈ X\{1, 2}. By Lemma 1, x(R) ̸= 0. Thus,

x(R) ∈ N\{1, 2}. Let i = x(R). By v2(2) < v3(3)−V1(2, (3, 0)) and 2 ≻1 3, v2(2) < v3(3).

Thus, by v3(3) > maxi∈N\{1,2,3} vi(i), Lemma 9 implies t1(R) = tf1(R−1; i) = v3(3) −

vi(i). By vi(i) < v3(3) − V1(i, (3, 0)), V1(i, (3, 0)) < t1(R), which implies (3, 0) P1 f1(R).

By Lemma 4, there is R′
1 ∈ R0

1 ∩ RQ
1 such that x(R′

1, R−1) = 1. By Lemma 9, we

have t1(R
′
1, R−1) = tf1(R−1; 1) = v3(3) − v2(1). By v2(1) > v3(3) − V1(1, (3, 0)), we have

V1(1, (3, 0)) > t1(R
′
1, R−1), which implies that f1(R

′
1, R−1) P1 (3, 0). This, together with

(3, 0) P1 f1(R), implies f1(R
′
1, R−1) P1 f1(R). This contradicts strategy-proofness.

By R1 ∈ RPIE
1 ∪ RNIE

1 , either R1 ∈ RPIE
1 or R1 ∈ RNIE

1 . Thus, there are two cases.

Case 1. R1 ∈ RPIE
1 .

By 2 ≻1 3, V1(2, (3, 0)) > 0. Thus, v3(3) − V1(2, (3, 0)) < v3(3). Let v ∈ R++ be such

that v3(3)−V1(2, (3, 0)) < v < v3(3). By v3(3)−V1(2, (3, 0)) < v, v3(3)−v < V1(2, (3, 0)).

By R1 ∈ RPIE
1 , V1(1, (2, v3(3) − v)) − (v3(3) − v) > V1(1, (3, 0)) − V1(2, (3, 0)).

34 Thus,

v − (V1(1, (3, 0))− V1(2, (3, 0))) > v3(3)− V1(1, (2, v3(3)− v)). Let v ∈ R++ be such that

v3(3)− V1(1, (2, v3(3)− v)) < v < v −
(
V1(1, (3, 0))− V1(2, (3, 0))

)
. (1)

Let R2 ∈ R+
2 ∩ RQ

2 be such that v2(2) = v, v2(1) = v, and for each x ∈ X\{1, 2},

v2(x) = 0. We have

v2(2)− v2(1) = v − v > V1(1, (3, 0))− V1(2, (3, 0)) = tf2(R−2; 2)− tf2(R−2; 1),

where the inequality follows from (1), and the last equality from Lemma 27 and tf2(R−2; 2) =

34Note that V1(1, (2, V1(2, (3, 0)))) = V1(1, (3, 0)).
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v3(3)−V1(2, (3, 0)). Thus, v2(2)−tf2(R−2; 2) > v2(1)−tf2(R−2; 1). For each x ∈ Xf
2 (R−2)\{1, 2},

v2(2)− tf2(R−2; 2) = v −
(
v3(3)− V1(2, (3, 0))

)
> 0 ≥ v2(x)− tf2(R−2;x),

where the first inequality follows from v > v3(3) − V1(2, (3, 0)), and the second one from

no subsidy for losers. Thus, by Lemma 3, x(R) = 2. Then, by v3(3) > v = v2(2) and

v3(3) > maxi∈N\{1,2,3} vi(i), Lemma 9 implies t1(R) = tf1(R−1; 2) = maxx∈X
∑

i∈N\{1} vi(x)−

v2(2) = v3(3)− v2(2) = v3(3)− v. Then,

(
t1(R)− V1(1, f1(R))

)
+
(
t2(R)− V2(1, f2(R))

)
=

(
(v3(3)− v)− V1(1, (2, v3(3)− v))

)
+(v − v)

= v3(3)− V1(1, (2, v3(3)− v))− v < 0,

where the first equality follows from f1(R) = (2, v3(3) − v), and the inequality from (1).

This contradicts Lemma 2 (iii).

Case 2. R1 ∈ RNIE
1 .

By desirability of own consumption ofR1, V1(1, (3, 0)) > 0. Thus, v3(3)−V1(1, (3, 0)) < v3(3).

Let v ∈ R++ be such that v3(3) − V1(1, (3, 0)) < v < v3(3). By v3(3) − V1(1, (3, 0)) < v,

v3(3)−v < V1(1, (3, 0)). Thus, byR1 ∈ RNIE
1 , (v3(3)−v)−V1(2, (1, v3(3)−v)) < V1(1, (3, 0))−

V1(2, (3, 0)).
35 Thus, v3(3) − V1(2, (1, v3(3) − v)) < v + V1(1, (3, 0)) − V1(2, (3, 0)). Let

v ∈ R++ be such that v < v < v3(3), and

v3(3)− V1(2, (1, v3(3)− v)) < v < v + V1(1, (3, 0))− V1(2, (3, 0)). (2)

Let R2 ∈ R+
2 ∩ RQ

2 be such that v2(2) = v, v2(1) = v, and for each x ∈ X\{1, 2},

v2(x) = 0. Then,

v2(1)− v2(2) = v − v > V1(2, (3, 0))− V1(1, (3, 0)) = tf2(R−2; 1)− tf2(R−2; 2),

where the inequality follows from (2), and the last equality from Lemma 27 and tf2(R−2; 2) =

35Note that V1(2, (1, V1(1, (3, 0)))) = V1(2, (3, 0)).
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v3(3)−V1(2, (3, 0)). Thus, v2(1)−tf2(R−2; 1) > v2(2)−tf2(R−2; 2). For each x ∈ Xf
2 (R−2)\{1, 2},

v1(1)− tf2(R−2; 1) = v −
(
v3(3)− V1(1, (3, 0))

)
> 0 ≥ v2(x)− tf2(R−2;x),

where the equality follows from Lemma 27, the first inequality from v > v3(3)−V1(1, (3, 0)),

and the second one from no subsidy for losers. Thus, by Lemma 3, x(R) = 1. By

v3(3) > v = v2(2) and v3(3) > maxi∈N\{1,2,3} vi(i), Lemma 9 implies that t1(R) = v3(3)−

v2(1) = v3(3)− v. Then,

(
t1(R)− V1(2, f1(R))

)
+
(
t2(R)− V2(2, f2(R))

)
=

(
(v3(3)− v)− V1(2, (1, v3(3)− v))

)
+(v − v)

= v3(3)− V1(2, (1, v3(3)− v))− v < 0,

where the first equality follows from f1(R) = (1, v3(3) − v), and the inequality from (2).

This contradicts Lemma 2 (i).

Part 2. Suppose 3 ≻1 2. Without loss of generality, assume that for each i ∈ N\{1, 2},

3 ⪰1 i. Let i ∈ N\{1, 2} be such that i ⪰1 2. By 3 ⪰1 i, V1(3, (i, 0)) ≥ 0. Thus, by

R1 ∈ RPIE
1 ∪ RNIE

1 , V1(3, (2, 0)) − V1(i, (2, 0)) ≥ 0. Thus, for each i ∈ N\{1, 2} with

i ⪰1 2, V1(3, (2, 0)) ≥ V1(i, (2, 0)).

If n ≥ 4, then for each i ∈ N\{1, 2, 3}, let Ri ∈ R0
i ∩ RQ

i be a preference such that

vi(i) < min{V1(1, (2, 0)) − V1(3, (2, 0)), V1(1, (3, 0))}. By desirability of own consumption

of R1, we can choose such R1. Let R3 ∈ R0
3 ∩ RQ

3 be such that v3(3) > maxi∈N\{1,2,3} vi(i).

Then, 3 ∈ N−1,2(R−2). Let i ∈ N\{1, 2} be such that i ⪰1 2. If i = 3, then by 3 ≻1 2,

V1(3, (2, 0)) > 0 = v3(3) − v3(3). Thus, we have τ2,3(R−2) = v3(3) + V1(3, (2, 0)) > v3(3).

Suppose that i ≥ 4. If v3(3) − vi(i) ≥ V1(i, (2, 0)), then we have τ2,i(R−2) = v3(3) −

V1(2, (i, v3(3)− vi(i))) ≤ v3(3) < τ2,3(R−2). If v3(3)− vi(i) < V1(i, (2, 0)), then τ2,i(R−2) =

vi(i) + V1(i, (2, 0)) < v3(3) + V1(3, (2, 0)) = τ2,3(R−2), where the inequality follows from

v3(3) > vi(i) and V1(3, (2, 0)) ≥ V1(i, (2, 0)). Thus, maxi∈N\{1,2}i⪰12 τ2,i(R−2) = τ2,3(R−2) =

v3(3) + V1(3, (2, 0)). By Lemma 4, 2 ∈ Xf
2 (R−2). By 3 ≻1 2, Lemma 22 implies

tf2(R−2; 2) = max
{
V1(1, (2, 0)), v3(3) + V1(3, (2, 0))

}
. (3)

By R1 ∈ RPIE
1 ∪ RNIE

1 , either R1 ∈ RPIE
1 or R1 ∈ RNIE

1 . Thus, there are two cases.
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Case 1. R1 ∈ RPIE
1 .

By 3 ≻1 2, V1(3, (2, 0)) > 0. Thus, byR1 ∈ RPIE
1 , V1(1, (2, 0))−V1(3, (2, 0)) < V1(1, (3, 0)).

36

Thus, we can chooseR3 ∈ R0
3 ∩ RQ

3 such that V1(1, (2, 0))−V1(3, (2, 0)) < v3(3) < V1(1, (3, 0)).

By v3(3) > V1(1, (2, 0)) − V1(3, (2, 0)), v3(3) + V1(3, (2, 0)) > V1(1, (2, 0)). Thus, by (3),

tf2(R−2; 2) = v3(3) + V1(3, (2, 0)).

By Lemma 26, 1 ∈ Xf
2 (R−2). We show the following lemma which states that given

R−2, if the rule f selects the object allocation 1, then the payment of agent 2 is equal to 0.

Lemma 28. We have tf2(R−2; 1) = 0.

Proof. By no subsidy for losers, tf2(R−2; 1) ≥ 0. By contradiction, suppose that tf2(R−2; 1) > 0.

LetR2 ∈ R+
2 ∩ RQ

2 be such that v2(2) < v3(3), 0 < v2(1) < tf2(R−2; 1), and for each x ∈ X\{1, 2},

v2(x) = 0. By 3 ≻1 2 and tf2(R−2; 2) = v3(3) + V1(3, (2, 0)), t
f
2(R−2; 2) > v3(3). Thus,

by v3(3) > v2(2), we have tf2(R−2; 2) > v2(2), or equivalently, 0 > v2(2) − tf2(R−2; 2). By

v2(1) < tf2(R−2; 1), 0 > v2(1)−tf2(R−2; 1). Thus, by weak individual rationality, x(R) ∈ X\{1, 2}.

By Lemma 1, x(R) ̸= 0. Thus, x(R) ∈ N\{1, 2}.

Suppose x(R) = 3. By v3(3) > v2(2) and v3(3) > maxi∈N\{1,2,3} vi(i), Lemma 9 implies

t1(R) = maxx∈X
∑

i∈N\{1} vi(x)− v3(3) = v3(3)− v3(3) = 0. Then,

(
t1(R)− V1(1, f1(R))

)
+
(
t3(R)− V3(1, f3(R))

)
= −V1(1, (3, 0)) + v3(3)

< 0 < v2(1) = V2(1, f2(R))− t2(R),

where the first equality follows from f1(R) = (3, 0), the first inequality from v3(3) < V1(1, (3, 0)),

and the second inequality from v2(1) > 0. This contradicts Lemma 2 (ii).

Suppose x(R) = i for some i ∈ N\{1, 2, 3}. By v3(3) > v2(2) and v3(3) > maxi∈N\{1,2,3} vi(i),

Lemma 9 implies t1(R) = v3(3)−vi(i) > 0. By 3 ⪰1 i, (3, 0) R1 (i, 0). Thus, by t1(R) > 0,

(3, 0) P1 f1(R). By Lemma 10, there is R′
1 ∈ R0

1 ∩ RQ
1 such that f1(R

′
1, R−1) = (3, 0).

Thus, f1(R
′
1, R−1) P1 f1(R), which contradicts strategy-proofness.

Recall that V1(1, (2, 0)) < v3(3) + V1(3, (2, 0)). Thus, we can choose R2 ∈ R+
2 ∩ RQ

2

such that v2(2) > v3(3), V1(1, (2, 0)) < v2(2)− v2(1) < v3(3) + V1(3, (2, 0)), v2(1) > 0, and

36Note that V1(1, (3, V1(3, (2, 0)))) = V1(1, (2, 0)).
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for each x ∈ X\{1, 2}, v2(x) = 0. By tf2(R−2; 2) = v3(3) + V1(3, (2, 0)) and Lemma 28,

tf2(R−2; 2)− tf2(R−2; 1) = v3(3)+V1(3, (2, 0)). Thus, by v2(2)−v2(1) < v3(3)+V1(3, (2, 0)),

v2(1) − tf2(R−2; 1) > v2(2) − tf2(R−2; 2). For each x ∈ Xf
2 (R−2)\{1, 2}, by v2(1) > 0 =

tf2(R−2; 1) and no subsidy for losers, v2(1)− tf2(R−2; 1) > 0 ≥ v2(x)− tf2(R−2;x). Thus, by

Lemma 3, x(R) = 1. By v2(2) > v3(3) and v3(3) > maxi∈N\{1,2,3} vi(i), Lemma 9 implies

t2(R) = tf2(R−2; 1) = v2(2) − v2(1). By v2(2) − v2(1) > V1(1, (2, 0)), t1(R) > V1(1, (2, 0)),

which implies (2, 0) P1 f1(R). By Lemma 10, there isR′
1 ∈ R0

1 ∩ RQ
1 such that f1(R

′
1, R−1) =

(2, 0). Thus, f1(R
′
1, R−1) P1 f1(R), which contradicts strategy-proofness.

Case 2. R1 ∈ RNIE
1 .

By 3 ≻1 2, V1(3, (2, 0)) > 0. Thus, byR1 ∈ RNIE
1 , V1(1, (2, 0))−V1(3, (2, 0)) > V1(1, (3, 0)).
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Thus, we can chooseR3 ∈ R0
3 ∩ RQ

3 such that V1(1, (3, 0)) < v3(3) < V1(1, (2, 0))−V1(3, (2, 0)).

By v3(3) < V1(1, (2, 0)) − V1(3, (2, 0)), v3(3) + V1(3, (2, 0)) < V1(1, (2, 0)). Thus, by (3),

tf2(R−2; 2) = V1(1, (2, 0)).

The following lemma states that given R−2, the rule f selects the object allocation 3

for some preference of agent 2.

Lemma 29. We have 3 ∈ Xf
2 (R−2).

Proof. Let R2 ∈ R0
2 ∩ RQ

2 be such that v2(2) < v3(3). To show that 3 ∈ Xf
2 (R−2), it

suffices to show x(R) = 3. By contradiction, suppose not. By Lemma 1, x(R) ̸= 0.

We claim (3, 0) P1 f1(R). Suppose x(R) = 1. By v3(3) > maxi∈N\{1,3} vi(i), Lemma 9

implies that t1(R) = tf1(R−1; 1) = maxi∈N\{1} vi(x) = v3(3). By v3(3) > V1(1, (3, 0)),

(3, 0) P1 f1(R). Next, suppose x(R) = i for some i ∈ N\{1, 3}. By v3(3) > maxj∈N\{1,3} vj(j),

Lemma 9 implies that t1(R) = v3(3) − vi(i) > 0. By 3 ⪰1 i, (3, 0) R1 (i, 0). Thus, by

t1(R) > 0, (3, 0) P1 f1(R). Thus, in either case, (3, 0) P1 f1(R). By Lemma 10, there is

R′
1 ∈ R0

1 ∩ RQ
1 such that f1(R

′
1, R−1) = (3, 0). Thus, f1(R

′
1, R−1) P1 f1(R), which contra-

dicts strategy-proofness.

By Lemma 29, tf2(R−2; 3) is well-defined. The following lemma states that given R−2,

if the rule f selects the object allocation 3, then the payment of agent 2 is equal to zero.

Lemma 30. We have tf2(R−2; 3) = 0.

37Note that V1(1, (3, V1(3, (2, 0)))) = V1(1, (2, 0)).
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Proof. Suppose by contradiction that tf2(R−2; 3) > 0. Let R2 ∈ R+
2 ∩ RQ

2 be a preference

such that v2(2) < v3(3), 0 < v2(3) < tf2(R−2; 3), and for each x ∈ X\{1, 2}, v2(x) = 0.

By v3(3) + V1(3, (2, 0)) < V1(1, (2, 0)) and 3 ≻1 2, we have v3(3) < V1(1, (2, 0)). Thus, by

v2(2) < v3(3), v2(2) < V1(1, (2, 0)) = tf2(R−2; 2), or equivalently, 0 > v2(2)−tf2(R−2; 2). By

v2(3) < tf2(R−2; 3), 0 > v2(3) − tf2(R−2; 3). Thus, by weak individual rationality, we have

x(R) ∈ X\{2, 3}. By Lemma 1, x(R) ̸= 0. Thus, x(R) ∈ N\{2, 3}.

Suppose x(R) = 1. By v3(3) > v2(2) and v3(3) > maxi∈N\{1,2,3} vi(i), Lemma 9 im-

plies t1(R) = tf1(R−1; 1) = v3(3). By v3(3) > V1(1, (3, 0)), (3, 0) P1 (1, v3(3)) = f1(R). By

Lemma 10, there isR′
1 ∈ R0

1 ∩ RQ
1 such that f1(R

′
1, R−1) = (3, 0). Thus, f1(R

′
1, R−1) P1 f1(R).

This contradicts strategy-proofness.

If x(R) = i for some i ∈ N\{1, 2, 3}, then we can derive a contradiction by the same

discussion as in the case where x(R) = i for some i ∈ N\{1, 2, 3} in the proof of Lemma 28.

Thus, we omit the detail.

By v3(3) < V1(1, (2, 0)) − V1(3, (2, 0)), v3(3) + V1(3, (2, 0)) < V1(1, (2, 0)). Thus, we

can choose R2 ∈ R+
2 ∩ RQ

2 such that v2(2) > V1(1, (2, 0)), v3(3) + V1(3, (2, 0)) < v2(2) −

v2(3) < V1(1, (2, 0)), and for each x ∈ X\{2, 3}, v2(x) = 0. By v2(2)−v2(3) < V1(1, (2, 0)) =

tf2(R−2; 2) and Lemma 30, we have v2(3) − tf2(R−2; 3) > v2(2) − tf2(R−2; 2). For each

x ∈ Xf
2 (R−2)\{2, 3}, by v2(2) > V1(1, (2, 0)) = tf2(R−2; 2) and no subsidy for losers, we

have v2(2)− tf2(R−2; 2) > 0 ≥ v2(x)− tf2(R−2;x). Thus, by Lemma 3, x(R) = 3. Then, by

v2(2)− v2(3) > v3(3) + V1(3, (2, 0)) and 3 ≻1 2, v2(2)− (v2(3) + v3(3)) > V1(3, (2, 0)) > 0.

Thus, by v3(3) > maxi∈N\{1,2,3} vi(i), Lemma 9 implies that t1(R) = tf1(R−1; 3) = v2(2) −

(v2(3) + v3(3)). Thus,　 by v2(2) − v2(3) > v3(3) + V1(3, (2, 0)), we have t1(R) = v2(2) −

(v2(3) + v3(3)) > V1(3, (2, 0)), which implies that (2, 0) P1 f1(R). By Lemma 10, there is

R′
1 ∈ R0

1 ∩ RQ
1 such that f1(R

′
1, R−1) = (2, 0). Thus, f1(R

′
1, R−1) P1 f1(R), which contra-

dicts strategy-proofness. ■
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