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Hiroki Shinozaki†
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Abstract

We study the problem of allocating heterogeneous objects to agents with money.

Each agent can receive several objects and has a quasi-linear utility function. The

owner of the objects is only interested in his revenue from an allocation. An (allo-

cation) rule is shutting-out-proof if no group of agents together with the owner ever

benefits from shutting out other groups of agents and arranging payments among

themselves. We show that on any domain that includes all the additive valuation

functions, a Vickrey rule satisfies shutting-out-proofness if and only if all the valua-

tion functions in the domain satisfy the substitutes condition (Kelso and Crawford,

1982). Our result sheds a new light on the relationship between the desirable prop-

erties of a Vickrey rule and the substitutes condition (Ausubel and Milgrom, 2002;

Milgrom, 2004).

JEL Classification Numbers. D44, D47, D71, D82

Keywords. Shutting-out-proofness, Collusion, Vickrey rules, Substitutes condition,

Combinatorial auctions

1 Introduction

1.1 Purpose

We study the problem of allocating heterogeneous objects to agents with money. Each

agent can receive several objects and has a quasi-linear utility function. A valuation func-

∗The author gratefully acknowledges financial support from the Japan society for the Promotion of
Sciences (23K18777).

†Hitotsubashi Institute for Advanced Study, Hitotsubashi University. Email: shinozakiecon@gmail.com
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tion specifies the valuation (the willingness to pay) of each set of objects. Note that a

quasi-linear utility function is characterized by a valuation function. A class of valuation

functions is called a domain. We consider the model where the set of agents can vary

while the set of objects is fixed. An economy is a pair consisting of a set of agents and

valuation functions of the agents. A (consumption) bundle is a pair of a set of objects

that an agent receives and a payment that he makes. An allocation for a given economy

specifies a bundle for each agent in the economy. We assume that the owner of the objects

in only interested in his revenue (i.e., the sum of payments) from an allocation, and so he

does not care who get what objects. An (allocation) rule is a function that associates an

allocation with each economy.

Important examples of the problem are combinatorial auctions such as public procure-

ment auctions, spectrum auctions, etc. One of the biggest concerns of practical auctions

is to prevent agents from collusion (Klemperer, 2002). There is a plenty of research that

studies collusion among a group of agents in auctions (Graham and Marshall, 1987; McAfee

and McMillan, 1992; Pavlov, 2008; Che and Kim, 2009; Che et al., 2018; Shinozaki, 2022,

etc.).

In contrast, to the best of our knowledge, there is no research prior to this paper and

our companion papers (Shinozaki, 2023a,b) that studies rules preventing collusion between

a group of agents and the owner of the object . In practical auctions such as public procure-

ment auctions in Japan, collusion between a group of agents and the owner is pervasive

as well as collusion among only a group of agents (McMillan, 1991, 2003). There are sev-

eral types of such collusion, e.g., a group of agents together with the owner may benefit

from misrepresenting the agents’ valuation functions and arranging payments among them-

selves, or they may benefit from shutting out rival agents and arranging payments among

themselves.

In this paper, we focus on collusion between a group of agents and the owner such

that they benefit from shutting out other groups of agents and arranging payments among

themselves.1 Such collusion will suppress new entrants into a market, which is one of the

biggest concerns of practical auction design as well as preventing collusion (Klemperer,

2002).

1In our companion papers (Shinozaki, 2023a,b), we study collusion such that a group of agents and
the owner benefit from misrepresenting the agents’ valuation functions and arranging payments among
themselves.
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In a practical auction, the planner (typically equivalent to the owner) is often able to

select the participants of the auction, and so it is easy to conduct such collusion (McMillan,

1991, 2003). In fact, there are several examples of such collusion in the Japanese public

procurement auctions that are detected and punished by the law. For example, in 2023,

the former vice mayor of Kushima City, Miyazaki, Japan (corresponding to the owner),

together with a president and employees of several construction companies (corresponding

to a group of agents), was arrested for collusion such that they jointly shut out some group

of companies in a procurement auction for public construction.2

The purpose of this paper is to study the class of rules that prevent a group of agents

together with the owner from shutting out other groups of agents.

1.2 Main result

We propose a new property of a rule that prevents a set of agents and the owner from

shutting out other agents. A rule satisfies shutting-out-proofness if, given an economy, no

subset of the agents in the economy together with the owner ever benefits from shutting

out other agents outside the economy and arranging payments among themselves. We

also propose a new property that we call aggregate utility monotonicity. A rule satisfies

aggregate utility monotonicity if, given an economy, the sum of utilities from an outcome

allocation of the rule among each subset of the agents in the economy and the owner weakly

increases when other agents entry into the economy. First, we establish the equivalence

between shutting-out-proofness and aggregate utility monotonicity (Proposition 1): On

any domain, a rule satisfies shutting-out-proofness if and only if it satisfies aggregate

utility monotonicity.

We are interested in the class of rules satisfying shutting-out-proofness together with

the other desirable and standard properties: strategy-proofness, efficiency, individual ra-

tionality, and no subsidy.3 A rule is a Vickrey rule (Vickrey, 1961) if it allocates the objects

to the agents so as to maximize the sum of valuations, and the payment of each agent is

equal to the impact on the other agents. It is well known that the Vickrey rules are the

2A news article (in Japanese) that reports the collusion incident is: https://www3.nhk.or.jp/lnews/
miyazaki/20231207/5060017062.html.

3A rule satisfies strategy-proofness if no agent ever benefits from misrepresenting his valuation functions.
It satisfies efficiency if the object allocation chosen by the rule always maximizes the sum of valuations.
It satisfies individual rationality if no agent ever gets worse off than the non-participation. It satisfies no
subsidy if the payment of each agent is always non-negative.

3

https://www3.nhk.or.jp/lnews/miyazaki/20231207/5060017062.html
https://www3.nhk.or.jp/lnews/miyazaki/20231207/5060017062.html


only rules satisfying strategy-proofness, efficiency, individual rationality, and no subsidy

(Holmstròm, 1979; Chew and Serizawa, 2007), Thus, we focus on the Vickrey rules, and

study whether and when a Vickrey rule satisfies shutting-out-proofness.

A valuation function satisfies the substitutes condition (Kelso and Crawford, 1982) if

the increase of a price of an object does not decrease the demand of the other objects. A

valuation function is additive if it is an additive function. Note that each additive valuation

function satisfies the substitutes condition.

The main result of this paper (Theorem 1) is as follows: On any domain that includes

all the additive valuation functions, a Vickrey rule satisfies shutting-out-proofness if and

only if all the valuation functions in the domain satisfy the substitutes condition. Recall

that shutting-out-proofness is equivalent to aggregate utility monotonicity (Proposition 1).

Thus, Theorem 1 also implies that a Vickrey rule on any domain that includes all the

additive valuation functions satisfies aggregate utility monotonicity if and only if all the

valuation functions in the domain satisfy the substitutes condition.

1.3 Related literature

There are several papers that study collusion only among agents. Some papers study the

equilibrium properties of a specific rule such as a first-price and a second-price rules in the

presence of collusion among agents (Graham and Marshall, 1987; McAfee and McMillan,

1992; Pesendorfer, 2000; Marshall and Marx, 2007, 2009, etc.), while others study rules

that prevent collusion among agents (Pavlov, 2008; Che and Kim, 2009; Che et al., 2018;

Shinozaki, 2022, etc.). This paper is close to the latter papers in that we also study rules

that prevent collusion, but is different from those papers in that we focus on collusion

between a group of agents and the owner, while they do collusion among a group of agents.

As already noted, there has been no previous study that investigates rules prevent-

ing collusion between a group of agents and the owner, and this paper together with our

companion papers (Shinozaki, 2023a,b) are the first to study such rules. In contrast with

this paper, Shinozaki (2023a,b) both study two-sided collusion-proofness which requires no

group of agents together with the owner ever benefit from misrepresenting the agents’ valu-

ation functions and arranging payments among themselves. Shinozaki (2023b) establishes

that the only rules satisfying two-sided collusion-proofness, strategy-proofness, individual

rationality, and no subsidy are the constant rules which output the same outcome for
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each valuation profile, while a Vickrey rule can prevent specific two-sided collusion such as

two-sided collusion without side payments and all-inclusive two-sided collusion. Shinozaki

(2023a) characterizes the first-price rules in the single object model as the only rules that

satisfy Bayesian incentive compatibility, efficiency, individual rationality, and no subsidy,

and prevent “self-imposing” two-sided collusion under which no single agent has unilateral

incentives to deviate from the collusion.

There are some papers that study corruption in auctions by the owner (Celentani

and Ganuza, 2002; Compte et al., 2005; Menezes and Monteiro, 2006; Arozamena and

Weinschelbaum, 2009, Lengwiler and Wolfstetter, 2010; Burguet, 2017, etc.) They study

specific rules such as a first-price and a second-price rules or optimal rules in models

where the owner has a chance to bribe agents, and investigate the equilibrium properties

of specific rules or derive optimal rules. Note that collusion between a group of agents

and the owner that we consider in this paper can be regarded as a kind of corruption by

the owner. The difference between this paper and these paper lies in the attitude toward

corruption. Indeed, we interpret corruption (i.e., collusion between a group of agents and

the owner) as a phenomenon that should be prevented, and investigate rules that prevent

such corruption. In contrast, they take the possibility of corruption as given, and study

the equilibrium properties of rules or derive optimal rules in the presence of corruption.

It is known in the literature that a Vickrey rule on a domain including all the additive

valuation functions satisfies the desirable properties such as core allocation property, utility

monotonicity, loser-collusion-proofness, and false-name-proofness (Yokoo et al., 2004) if

and only if all the valuation functions in the domain satisfy the substitutes condition

(Ausubel and Milgrom, 2002; Ausubel, 2004).4 Our main result (Theorem 1) sheds a

new light on the relationship between the desirable properties of a Vickrey rule and the

substitutes condition, i.e., the equivalence between shutting-out-proofness (or aggregate

utility monotonicity) of a Vickrey rule and the substitutes condition.

4A rule satisfies core allocation property if an outcome allocation of a rule is always a core allocation.
It satisfies utility monotonicity if the utility of each agent weakly increases when some agents leave from
an economy. It satisfies loser-collusion-proofness if no group of losers ever benefits from misrepresenting
their valuation functions. It satisfies false-name-proofness if no agent ever benefits from introducing “false-
name” agents.
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1.4 Organization

The rest of this paper is organized as follows. Section 2 introduces the model. Section 3

introduces the Vickrey rules. Section 4 presents the main result. Section 5 discusses in

detail the relationships between shutting-out-proofness and the other desirable properties

of a Vickrey rule under the substitutes condition. Section 6 concludes. All the proofs are

relegated to the Appendix.

2 Model

The set of potential agents is N. Let N = {N ⊆ N : 0 < |N | < ∞}. Let 0 indicate the

owner of the objects. The owner holds m ≥ 1 heterogeneous objects. Let M = {1, . . .,m}

denote the set of objects. Let M denote the power set of M , i.e., M = 2M . A set of

objects that an agent i ∈ N receives is Ai ∈ M. The amount of a payment that an agent

i ∈ N makes is ti ∈ R. Then, the (consumption) set of an agent i ∈ N is M × R, and a

(consumption) bundle of an agent i ∈ N is a pair zi = (Ai, ti) ∈ M × R.

An agent i ∈ N has a quasi-linear utility function ui : M × R → R such that for some

valuation function vi : M → R+, (i) vi(∅) = 0, (ii) for each pair Ai, A
′
i ∈ M with

Ai ⊇ A′
i, vi(Ai) ≥ vi(A

′
i), and (iii) for each zi = (Ai, ti) ∈ M × R, ui(zi; vi) = vi(Ai)− ti.

The second condition (ii) above corresponds to free disposal. Note that a quasi-linear

utility function is fully specified by a valuation function. Thus, we identify a set of quasi-

linear utility functions with a set of valuation functions. Our generic notation for a class

of valuation functions is V . We call V a domain.

We introduce the two classes of valuation functions that will play important role in this

paper.

Given vi ∈ V and a price vector p = (pa)a∈M ∈ Rm
+ , the demand set for vi at p is

D(vi, p) =
{
Ai ∈ M : ∀A′

i ∈ M, ui

((
Ai,

∑
a∈Ai

pa
)
; vi

)
≥ ui

((
A′

i,
∑
a∈A′

i

pa
)
; vi

)}
.

First, a valuation function vi satisfies the substitutes condition (Kelso and Crawford,

1982) if, for each price vector p ∈ Rm
+ , each a ∈ M , each ε ∈ R++, and each Ai ∈ D(vi, p),
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there is A′
i ∈ D(vi, p+ εea) such that

Ai ∩ (M\{a}) ⊆ A′
i,

where ea denotes the a-th unit vector whose a-th component is 1, and all the other com-

ponents are 0. Let VSub denote the class of valuation functions satisfying the substitutes

condition. We call VSub the substitutes domain.

Second, a valuation function vi is additive if it is an additive function, i.e., for each

pair Ai, A
′
i ∈ M with Ai ∩ A′

i = ∅, we have vi(Ai ∪ A′
i) = vi(Ai) + vi(A

′
i). Let VAdd

denote the class of additive valuation functions. We call VAdd the additive domain. Note

that VAdd ⊆ VSub, i.e., each additive valuation function satisfies the substitutes condition.

When m = 1, VAdd = VSub, and both the domains are equal to the class of all valuation

functions.

Given N ∈ N , a valuation profile for N is vN = (vi)i∈N ∈ VN .

Given a domain V , an economy on V is a triple e = (N,M, vN), where N ∈ N and

vN ∈ VN . The set of objects M are fixed throughout the paper, and so we may omit M

from an economy. Thus, an economy is a pair e = (N, vN). Given V , let E(V) denote the

class of economies on V . We may omit a domain V from E(V), and let E denote the class

of all economies on V .

Given N ∈ N , a (feasible) object allocation for N is AN = (Ai)i∈N ∈ MN such

that ∪i∈NAi ⊆ M . Let XN denote the set of all object allocations for N . Also, given

N ∈ N , a (feasible) allocation for N is zN = (zi)i∈N = (Ai, ti)i∈N ∈ (M × R)n such

that (Ai)i∈N ∈ XN . Let ZN denote the set of all allocations for N . Given an allocation

zN = (zi)i∈N ∈ ZN for N ∈ N and N ′ ∈ N with N ′ ⊆ N , let zN ′ = (zi)i∈N ′ .

The owner of the objects is only interested in his revenue from an allocation. Thus, he

has a quasi-linear utility function u0 from ∪N∈NZN to R such that for each N ∈ N and

each zN = (Ai, ti)i∈N ∈ ZN , u0(zN) =
∑

i∈N ti.

An (allocation) rule on V is a function f : E → ∪N∈NZN such that for each e =

(N, vN) ∈ E , f(e) ∈ ZN . Given a rule f on V , let xf : E → ∪N∈NXN denote the object

allocation rule associated with f , and tf : E → ∪N∈NRN the associated payment rule.

Given a rule f on V , e = (N, vN) ∈ E , and i ∈ N , let fi(e) = (xf
i (e), t

f
i (e)) denote an

outcome bundle of agent i for e under f .

We introduce the properties of rules.
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The following is a new property which requires that given an economy e = (N, vN),

no subset of N together with the owner ever benefit from shutting out other agents and

arranging payments among themselves.

Shutting-out-proofness. For each pairN,N ′ ∈ N withN ∩ N ′ = ∅ and each vN∪N ′ ∈ VN∪N ′
,

there are no N ′′ ∈ N with N ′′ ⊆ N and (pi)i∈N ′′ ∈ RN ′′
such that for each i ∈ N ′′,

ui(fi(N, vN); vi)− pi > ui(fi(N ∪ N ′, vN∪N ′); vi),

and

u0(f(N, vN)) +
∑
i∈N ′′

pi > u0(f(N ∪ N ′, vN∪N ′)).

The following is also a new property which requires that given an economy e = (N, vN),

the sum of utilities from an outcome allocation of a rule among each subset of N and the

owner weakly increase by the entry of other agents outside the economy.5

Aggregate utility monotonicity. For each pair N,N ′ ∈ N with N ∩ N ′ = ∅, each

N ′′ ∈ N with N ′′ ⊆ N , and each vN∪N ′ ∈ VN∪N ′
, we have

∑
i∈N ′′

ui(fi(N ∪ N ′, vN∪N ′); vi) + u0(f(N ∪ N ′, vN∪N ′)) ≥
∑
i∈N ′′

ui(fi(e); vi) + u0(f(e)).

The following property requires that no agent ever benefit from misrepresenting his

valuation functions.

Strategy-proofness. For each e = (N, vN) ∈ E , each i ∈ N , and each v′i ∈ V , we have

ui(fi(e); vi) ≥ ui(fi(N, (v′i, vN\{i})); vi).

The following property requires that a rule select an allocation that maximize the sum

5Note that our aggregate utility monotonicity is different from the following natural monotonicity
property of aggregate utility which requires that the aggregate utility weakly increase when a set of agents
expands: For each pair N,N ′ ∈ N with N ∩ N ′ = ∅ and each vN∪N ′ ∈ VN∪N ′

, we have∑
i∈N∪N ′

ui(fi(N ∪ N ′, vN∪N ′); vi) + u0(f(N ∪ N ′, vN∪N ′)) ≥
∑
i∈N

ui(fi(N, vN ); vN ) + u0(f(N, vN )).

In general, our aggregate utility monotonicity is independent of the above monotonicity property, i.e., the
former does not necessarily imply the latter, and vice versa.
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of valuations, i.e., a (Pareto) efficient allocation.

Efficiency. For each e = (N, vN) ∈ E , we have xf (e) ∈ arg max
xN∈XN

∑
i∈N vi(xi).

The following property requires that each agent find his outcome bundle of a rule at

least as desirable as the non-participation under which he obtains the utility of zero.

Individual rationality. For each e = (N, vN) ∈ E and each i ∈ N , ui(fi(e); vi) ≥ 0.

Finally, the following property requires that the payment of each agent be non-negative.

No subsidy. For each e = (N, vN) ∈ E and each i ∈ N , tfi (e) ≥ 0.

We are interested in the class of rules satisfying shutting-out-proofness, strategy-proofness,

efficiency, individual rationality, and no subsidy, and study such a class of rules in this

paper.

3 Vickrey rule

In this section, we introduce the Vickrey rules (Vickrey, 1961).

Given an economy e = (N, vN) ∈ E , let

w(e) = max
xN∈XN

∑
i∈N

vi(xi)

denote the maximal sum of valuations for the economy e. For notational convenience, let

w(∅, v∅) = 0. Note that a rule f on V is efficient if and only if for each e = (N, vN) ∈ E ,

w(e) =
∑

i∈N vi(x
f
i (e)).

Under a Vickrey rule, the objects are allocated so as to maximize the sum of valuations,

and each agent pays the impact on the other agents.

Definition 1. A rule f on V is aVickrey rule (Vickrey, 1961) if, for each e = (N, vN) ∈ E ,

xf (e) ∈ arg max
xN∈XN

∑
i∈N

vi(xi),
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and for each i ∈ N

tfi (e) = w(N\{i}, vN\{i})−
∑

j∈N\{i}

vj(x
f
j (e)).

The following fact states that on any domain that includes the additive domain, the

Vickrey rules are the only rules satisfying strategy-proofness, efficiency, individual ratio-

nality, and no subsidy.

Fact 1 (Holmstròm, 1979; Chew and Serizawa, 2007). Let V be a domain such that

V ⊇ VAdd. A rule on V satisfies strategy-proofness, efficiency, individual rationality, and

no subsidy if and only if it is a Vickrey rule.

Thanks to Fact 1, we can restrict our attention to the class of Vickrey rules. Then, we

study whether and when a Vickrey rule satisfies shutting-out-proofness in the next section.

4 Main result

In this section, we present the main result of this paper.

First, the next result states that a rule on any domain satisfies shutting-out-proofness

if and only if it satisfies aggregate utility monotonicity. That is, shutting-out-proofness is

equivalent to aggregate utility monotonicity on any domain.

Proposition 1. Let V be a domain. Let f be a rule on V. The following two statements

are equivalent.

(i) f satisfies shutting-out-proofness.

(ii) f satisfies aggregate utility monotonicity.

The next result is the main result of this paper which states that a rule on any domain

that includes the additive domain satisfies shutting-out-proofness (or equivalently, aggre-

gate utility monotonicity by Proposition 1) if and only if all the valuation functions in the

domain satisfy the substitutes condition.

Theorem 1. Let V be a domain such that V ⊇ VAdd. Let f be a Vickrey rule on V. The

following three statements are equivalent.

(i) f satisfies shutting-out-proofness.
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(ii) f satisfies aggregate utility monotonicity.

(iii) We have V ⊆ VSub.

A corollary of Theorem 1 and Fact 1 is that the substitutes domain is the unique

maximal domain that includes the additive domain for the existence of a rule satisfying

shutting-out-proofness (or aggregate utility monotonicity), strategy-proofness, efficiency,

individual rationality, and no subsidy.

Corollary 1. Let V be a domain such that V ⊇ VAdd. The following three statements are

equivalent.

(i) There is a rule on V satisfying shutting-out-proofness, strategy-proofness, efficiency,

individual rationality, and no subsidy.

(ii) There is a rule on V satisfying aggregate utility monotonicity, strategy-proofness,

efficiency, individual rationality, and no subsidy.

(iii) We have V ⊆ VSub.

5 Discussion

In this section, we discuss the relationships between shutting-out-proofness and the other

desirable properties of a Vickrey rule under the substitutes condition.

First, we introduce the properties that a Vickrey rule satisfies under the substitutes

condition.

Given e = (N, vN) ∈ E , an allocation zN = (zi)i∈N = (xi, ti)i∈N ∈ Z for N is a core

allocation for e if w(N) =
∑

i∈N vi(xi), and there exists no N ′ ∈ N with N ′ ⊆ N such

that w(N ′) >
∑

i∈N ′ ui(zi; vi) + u0(zN ′). The following property requires that an outcome

allocation of a rule be a core allocation.

Core allocation property. For each e ∈ E , f(e) is a core allocation for e.

The next property requires that each agent get weakly better off when some agents

leave from the economy.

Utility monotonicity. For each e = (N, vN) ∈ E , each N ′ ∈ N with N ′ ⊆ N , and each

11



i ∈ N ′, we have

ui(fi(N
′, vN ′); vi) ≥ ui(fi(e); vi).

The next property requires that no group of losers who receive no object ever benefit

from misrepresenting their valuation functions.

Loser-collusion-proofness. For each e = (N, vN) and each N ′ ∈ N with N ′ ⊆ N and

Af
i (e) = ∅ for each i ∈ N ′, there is no v′N ′ ∈ VN ′

such that for each i ∈ N ′,

ui(fi(N, (v′N ′ , vN\N ′)); vi) > ui(fi(e); vi) (1)

Finally, the following property was introduced by Yokoo et al. (2004), which requires

that no agent ever benefit from introducing “false-name” agents.

False-name-proofness. For each e = (N, vN) ∈ E and each N ′ ∈ N with N ∩ N ′ = ∅,

there is no vN ′ ∈ VN ′
such that

vi

(∪
j∈N ′∪{i}

Af
j (N ∪ N ′, vN∪N ′)

)
−

∑
j∈N ′∪{i}

tfj (N ∪ N ′, vN∪N ′) > ui(fi(e); vi).

The following fact states that a Vickrey rule on any domain that includes the additive

domain satisfies any of the above four properties if and only if all the valuation functions

in the domain satisfy the substitutes condition. Thus, under a Vickrey rule, the above four

properties are all equivalent.

Fact 2 (Ausubel and Milgrom, 2002; Milgrom, 2004). Let V be a domain such that

V ⊇ VAdd. Let f be a Vickrey rule on V. The following five statements are equivalent.

(i) f satisfies core allocation property.

(ii) f satisfies utility monotonicity.

(iii) f satisfies loser-collusion-proofness.

(iv) f satisfies false-name-proofness.

(v) We have V ⊆ VSub.

Our result (Theorem 1) adds a new property to the list of desirable properties of a

Vickrey rule under the substitutes condition in Fact 2: shutting-out-proofness (or equiva-

lently, aggregate utility monotonicity). By Theorem 1 and Fact 2, shutting-out-proofness
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and aggregate utility monotonicity are both equivalent to any of the above four properties

under a Vickrey rule. By Fact 1, we can also conclude that shutting-out-proofness (or

aggregate utility monotonicity) is equivalent to any of the four properties under a rule

satisfying strategy-proofness, efficiency, individual rationality, and no subsidy.

In the remaining part of this section, we show that if we drop either strategy-proofness

or efficiency, then shutting-out-proofness (or aggregate utility monotonicity) is no longer

equivalent to any of the above four properties. Thus, shutting-out-proofness (or aggregate

utility monotonicity) itself is an independent property of the other desirable properties of

a Vickrey rule under the substitutes condition.

First, we demonstrate that if we drop strategy-proofness, then shutting-out-proofness

is independent of core allocation property, i.e., shutting-out-proofness does not necessarily

imply core allocation property, and vice versa.

Example 1 (Core allocation property is independent of shutting-out-proofness).

Let m = 1. Let V = VSub.

(i) Let f be a third-price rule on V .6 Then, it satisfies shutting-out-proofness, but violates

core allocation property. Note that it also satisfies efficiency, individual rationality and no

subsidy, but violates strategy-proofness.

(ii) Let f be a rule on V such that for each e = (N, vN) ∈ E , if |N | = 1, then f(e) is

equivalent to the outcome of a first-price rule for e,7 and otherwise, it is equivalent to

the outcome of a second-price rule for e.8 Then, it satisfies core allocation property, but

violates shutting-out-proofness. Note that it also satisfies efficiency, individual rationality,

and no subsidy, but violates strategy-proofness.

The next example shows that if we drop efficiency, then utility monotonicity is inde-

pendent of shutting-out-proofness.

Example 2 (Utility monotonicity is independent of shutting-out-proofness). Let

m = 1. Let V = VSub.

6A rule f on V is a third-price rule if for each e = (N, vN ) ∈ E , an agent with the highest valuation
wins the object, he pays the third-highest valuation (if |N | ≤ 2, then he pays nothing), and each loser pays
nothing.

7A rule f on V is a first-price rule if for each e ∈ E , an agent with the highest valuation wins the object,
he pays his own valuation, and each loser pays nothing.

8A rule f on V is a second-price rule if an agent with the highest valuation wins the object, he pays
the second-highest valuation (if |N | = 1, then he pays nothing), and each loser pays nothing. Note that a
second-price rule is equivalent to a Vickrey rule in the single object setting.
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(i) Let f be a rule on V such that for each e = (N, vN) ∈ E , if |N | = 1, then f(e) is

equivalent to the outcome of the no-trade rule for e,9 and otherwise, it is equivalent to the

outcome of a second-price rule for e. Then, it satisfies shutting-out-proofness, but violates

false-name-proofness. Note that it also satisfies strategy-proofness, individual rationality,

and no subsidy, but violates efficiency.

(ii) Let f be a rule on V such that for each e = (N, vN) ∈ E , if |N | = 1, then f(e) is

equivalent to the outcome of a second-price rule for e, and otherwise, it is equivalent to

the outcome of the no-trade rule for e. Then, it satisfies false-name-proofness, but violates

shutting-out-proofness. Note that it also satisfies strategy-proofness, individual rationality,

and no subsidy, but violates efficiency.

The next example shows that if we drop strategy-proofness, then loser-collusion-proofness

is independent of shutting-out-proofness.

Example 3 (Loser-collusion-proofness is independent of shutting-out-proofness).

Let m = 1. Let V = VSub.

(i) Let f be a rule on V such that for each e = (N, vN) ∈ E , if |N | ≤ 2, then f(e) is equiv-

alent to the outcome of a third-price rule, and otherwise, it is equivalent to the outcome of

a second-price rule. Then, it satisfies shutting-out-proofness, but violates loser-collusion-

proofness. It also satisfies efficiency, individual rationality and no subsidy, but violates

strategy-proofness.

(ii) Let f be a rule on V such that for each e = (N, vN) ∈ E , if |N | ≤ 2, then f(e) is

equivalent to the outcome of a first-price rule for e, and otherwise, it is equivalent to the

outcome of a second-price rule for e. Then, it satisfies loser-collusion-proofness, but violates

shutting-out-proofness. It also satisfies efficiency, individual rationality, and no subsidy,

but violates strategy-proofness.

Finally, the next example shows that if we drop efficiency, then false-name-proofness is

independent of shutting-out-proofness.

Example 4 (False-name-proofness is independent of shutting-out-proofness).

Let m = 1. Let V = VSub.

(i) Let f be a rule on V defined in Example 2 (i). Then, it satisfies shutting-out-proofness,

9A rule f on V is the no-trade rule if for each e = (N, vN ) ∈ E and each i ∈ N , fi(e) = (∅, 0).
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but violates false-name-proofness. It also satisfies strategy-proofness, individual rational-

ity, and no subsidy, but violates efficiency.

(ii) Let f be a rule on V defined in Example 2 (ii). Then, it satisfies false-name-proofness,

but violates shutting-out-proofness. It also satisfies strategy-proofness, individual ratio-

nality, and no subsidy, but violates efficiency.

6 Conclusion

In this paper, we have considered collusion between a group of agents and the owner such

that they benefit from shutting out other groups of agents with the possibility of arranging

payments among themselves. We have proposed a new property of a rule that prevents such

collusion (shutting-out-proofness) , and established that a Vickrey rule on a domain that

includes the additive domain satisfies shutting-out-proofness if and only if all the valuation

functions in the domain satisfy the substitutes condition (Theorem 1). Our result provides

a new insight into the relationship between the desirable properties of a Vickrey rule and

the substitutes condition (Ausubel and Milgrom, 2002; Milgrom, 2004).

In our formulation of shutting-out-proofness, we allow a group of agents and the owner

to arrange payments among themselves. Such a “bribe” (i.e., side payments) is typical

in practical collusion between agents and the owner,10 but it is also possible that they

may not arrange payments in fear of detection of the collusion by the antitrust authority.

Then, it would be interesting to investigate when a Vickrey rule satisfies a weaker version

of shutting-out-proofness without the possibility of arranging payments among themselves.

Appendix

A Proof of Proposition 1

In this section, we prove Proposition 1.

10For example, a news article reports that the former mayor of Shika Town, Ishikawa, Japan, and the
president of a construction company in Shika Town were arrested for leakage of the minimum bid price from
the former mayor and a bribe from the president of a construction company in a Japanese procurement
auction for public construction. See: https://www.asahi.com/articles/ASRD902DKRD8PISC00S.html.
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A.1 (i) implies (ii)

First, we show that (i) implies (ii). We show the contrapositive. Suppose that f violates

aggregate utility monotonicity. Then, there exist a pair N,N ′ ∈ N with N ∩ N ′ = ∅,

N ′′ ∈ N with N ′′ ⊆ N , and vN∪N ′ ∈ VN∪N ′
such that

∑
i∈N ′′

ui(fi(N, vN); vi)+u0(f(N, vN)) >
∑
i∈N ′′

ui(fi(N ∪ N ′, vN∪N ′); vi)+u0(f(N ∪ N ′, vN∪N ′)).

Then, we can choose ε ∈ R++ such that

|N ′′|ε < u0(f(N, vN)) +
∑
i∈N ′′

(
ui(fi(N, vN); vi)− ui(fi(N ∪ N ′, vN∪N ′); vi)

)
− u0(f(N ∪ N ′, vN∪N ′)). (1)

For each i ∈ N ′′, let pi = ui(fi(N, vN); vi) − ui(fi(N ∪ N ′, vN∪N ′); vi) − ε. Then, for each

i ∈ N ′′, by ε > 0,

ui(fi(N, vN); vi)− pi = ui(fi(N ∪ N ′, vN∪N ′); vi) + ε > ui(fi(N ∪ N ′, vN∪N ′); vi).

We also have

u0(f(N, vN)) +
∑
i∈N ′′

pi − u0(f(N ∪ N ′, vN∪N ′))

= u0(f(N, vN)) +
∑
i∈N ′′

(
ui(fi(N, vN); vi)− ui(fi(N ∪ N ′, vN∪N ′); vi)

)
−u0(f(N ∪ N ′, vN∪N ′))− |N ′|ε

> 0,

where the last inequality follows from (1). Thus, f violates shutting-out-proofness. ■

A.2 (ii) implies (i)

We show that (ii) implies (i). Again, we show the contrapositive. Suppose that f violates

shutting-out-proofness. Then, there exist a pair N,N ′ ∈ N with N ∩ N ′ = ∅, N ′′ ∈ N

with N ′′ ⊆ N , vN∪N ′ ∈ VN∪N ′
, and (pi)i∈N ′′ ∈ RN ′′

such that for each i ∈ N ′′,

ui(fi(N, vN); vi)− pi > ui(fi(N ∪ N ′, vN∪N ′); vi),
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and

u0(f(N, vN)) +
∑
i∈N ′′

pi > u0(f(N ∪ N ′, vN∪N ′)).

Summing up these inequalities yield

∑
i∈N ′′

ui(fi(N, vN); vi) + u0(f(N, vN))

=
∑
i∈N ′′

(
ui(fi(N, vN); vi)− pi

)
+u0(f(N, vN)) +

∑
i∈N ′′

pi

>
∑
i∈N ′′

ui(fi(N ∪ N ′, vN∪N ′); vi) + u0(f(N ∪ N ′, vN∪N ′)).

Thus, f violates aggregate utility monotonicity. ■

B Proof of Theorem 1

In this section, we prove Theorem 1. Note that Proposition 1 implies that (i) is equivalent

to (ii). Thus, it suffices to show that (ii) implies (iii) and (iii) implies (ii).

We begin with the following lemma. Although it follows from Theorem 8.1 of Milgrom

(2004), we give a self-standing proof for completeness.

Lemma 1. For each e = (N, vN) ∈ E and each N ′ ∈ N with N ′ ⊆ N , we have

∑
i∈N ′

ui(fi(e); vi) + u0(f(e)) = w(e)−
∑

i∈N\N ′

(
w(e)− w(N\{i}, vN\{i})

)
.

Proof. For each i ∈ N , we have

tfi (e) = w(N\{i}, vN\{i})−
∑

j∈N\{i}

vj(x
f
j (e)) = w(N\{i}, vN\{i})− (w(e)− vi(x

f
i (e))), (1)

where the second equality follows from efficiency (i.e., w(e) =
∑

j∈N vj(x
f
j (e))). Then,

u0(f(e)) =
∑
i∈N

tfi (e) =
∑
i∈N

(
w(N\{i}, vN\{i})− (w(e)− vi(x

f
i (e)))

)
=

∑
i∈N

(
w(N\{i}, vN\{i})− w(e)

)
+
∑
i∈N

vi(x
f
i (e))

= w(e)−
∑
i∈N

(
w(e)− w(N\{i}, vN\{i})

)
, (2)
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where the second equality follows from (1), and the last one from efficiency. Also, for each

i ∈ N , we have

ui(fi(e); vi) = vi(x
f
i (v))−

(
w(N\{i}, vN\{i})−

∑
j∈N\{i}

vj(x
f
j (e))

)
=

∑
j∈N

vj(x
f
j (e))− w(N\{i}, vN\{i}) = w(e)− w(N\{i}, vN\{i}), (3)

where the last equality follows from efficiency. Then,

∑
i∈N ′

ui(fi(e); vi) + u0(f(e))

= w(e)−
∑
i∈N

(
w(e)− w(N\{i}, vN\{i})

)
+
∑
i∈N ′

(
w(e)− w(N\{i}, vN\{i})

)
(by (2) and 3)

= w(e)−
∑

i∈N\N ′

(
w(e)− w(N\{i}, vN\{i})

)
,

as desired.

Given a domain V , w satisfies bidder submodularity on V if for each e = (N, vN) ∈ E

with vN ∈ VN , each N ′ ∈ N with N ′ ⊆ N , and each i ∈ N ′, we have

w(N ′, vN ′)− w(N ′\{i}, vN ′\{i}) ≥ w(N, vN)− w(N\{i}, vN\{i}).

We invoke the following fact which states that on any domain V that includes the

additive domain, w satisfies bidder submodularity on V if and only if the domain V is

included in the substitutes domain.

Fact 3 (Ausubel and Milgrom, 2002; Milgrom, 2004). Let V be a domain such that

V ⊇ VAdd. The following two statement are equivalent.

(i) w satisfies bidder submodularity on V.

(ii) We have V ⊆ VSub

B.1 (ii) implies (iii)

We show that (ii) implies (iii). We prove the contrapositive. Suppose that (iii) does

not hold, i.e., V ̸⊆ VSub. Then, by Fact 2, f violates core allocation property. Then, by
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efficiency of f , there exist a pair N,N ′ ∈ N with N ′ ⊆ N and vN ∈ VN such that

w(N ′, vN ′) >
∑
i∈N ′

ui(fi(N, vN); vi) + u0(f(N, vN)). (1)

By Lemma 1, we have

∑
i∈N

ui(fi(N, vN); vi) + u0(f(N, vN)) = w(N, vN).

Thus, by (1), we must have N ′ ̸= N . Thus, by N ′ ⊆ N , N ′ ⊊ N . Also, by Lemma 1, we

have ∑
i∈N ′

ui(fi(N
′, vN ′); vi) + u0(f(N

′, vN ′)) = w(N ′, vN ′). (2)

Combining (1) and (2), we get

∑
i∈N ′

ui(fi(N
′, vN ′); vi)+u0(f(N

′, vN ′)) = w(N ′, vN ′) >
∑
i∈N ′

ui(fi(N, vN); vi)+u0(f(N, vN)).

Thus, by N ′ ⊊ N , f violates aggregate utility monotonicity, i.e., (ii) does not hold. ■

B.2 (iii) implies (ii)

We show that (iii) implies (ii). Suppose (iii) holds, i.e., V ⊆ VSub. By Fact 3, w satisfies

bidder submodularity on V . Let N,N ′ ∈ N be a pair such that N ∩ N ′ = ∅. Let N ′′ ∈ N

be such that N ′′ ⊆ N . Let vN∪N ′ ∈ VN∪N ′
. By bidder submodularity on V , we have

∑
i∈N\N ′′

(
w(N, vN)− w(N\{i}, vN\{i})

)
≥

∑
i∈N\N ′′

(
w(N ∪ N ′, vN∪N ′)− w(N ∪ N ′\{i}, vN∪N ′\{i})

)
. (3)
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Let N ′ = {i1, . . ., iK}. For each k ∈ {1, . . ., K}, let N ′(k) = {i1, . . ., ik}. For notational

convenience, let N ′(0) = ∅. We have

w(N ∪ N ′, vN∪N ′)− w(N, vN) =
K∑
k=1

(
w(N ∪ N ′(k), vN∪N ′(k))− w(N ∪ N ′(k − 1), vN∪N ′(k−1))

)
≥

K∑
k=1

(
w(N ∪ N ′, vN∪N ′)− w(N ∪ N ′\{ik}, vN∪N ′\{ik})

)
=

∑
i∈N ′

(
w(N ∪ N ′, vN∪N ′)− w(N ∪N ′\{i}, vN∪N ′\{i})

)
,

(4)

where the inequality follows from bidder submodularity on V . Then, we have

w(N ∪ N ′, vN∪N ′)−
∑

i∈N∪N ′\N ′′

(
w(N ∪ N ′, vN∪N ′)− w(N ∪ N ′\{i}, vN∪N ′\{i})

)
= w(N ∪ N ′, vN∪N ′)−

∑
i∈N\N ′′

(
w(N ∪ N ′, vN∪N ′)− w(N ∪ N ′\{i}, vN∪N ′\{i})

)
−

∑
i∈N ′

(
w(N ∪ N ′, vN∪N ′)− w(N ∪ N ′\{i}, vN∪N ′\{i})

)
≥ w(N ∪ N ′, vN∪N ′)−

∑
i∈N\N ′′

(
w(N, vN)− w(N\{i}, vN\{i})

)
−

∑
i∈N ′

(
w(N ∪ N ′, vN∪N ′)− w(N ∪ N ′\{i}, vN∪N ′\{i})

)
(by (3))

≥ w(N, vN)−
∑

i∈N\N ′′

(
w(N, vN)− w(N\{i}, vN\{i})

)
. (by (4))

Thus, by Lemma 1, we get

∑
i∈N ′′

ui(fi(N ∪ N ′, vN∪N ′); vi)+u0(f(N ∪ N ′, vN∪N ′)) ≥
∑
i∈N ′′

ui(fi(N, vN); vi)+u0(f(N, vN)),

as desired. ■
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