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Abstract

We propose a formal testing procedure to examine resilience of an economy. Our
approach is applicable even when a cross-section of control group is unavailable and
circumvents potential bias in time-series regressions using data that includes structural
breaks. We provide measures of shock absorption and cumulative recovery. Our em-
pirical analysis reveals that most of the advanced countries were not resilient to the
Global Financial Crisis, while many were so during the COVID-19 pandemic. Poten-
tial determinants of economic resilience such as �nancial leverage and labor market
regulation may have negative correlations with these measures and other determinants
have heterogenous associations depending on the nature of the crisis.
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1 Introduction

The global economy experiences a business cycle marked by a sharp drop and protracted

recovery.1 Recent Global Financial Crisis (GFC) and the COVID-19 pandemic, have ac-

centuated this feature, prompting academia and policy makers to address the question of

whether post-crisis economic growth path has returned to the pre-crisis growth trajectory.

This is tied to the traditional concept of economic hysteresis (Blanchard and Summers, 1987;

Cerra and Saxena, 2008; Reinhart and Rogo¤, 2014, Ball, 2014; Cerra et al., 2023) and an

increasingly popular notion of economic resilience (Briguglio et al., 2009, Fingleton et al.,

2012, Martin, 2012, Jollès et al., 2023).2 Some studies have applied existing econometric

methods and others tailored new ones to tackle this question. For example, Cerra and Sax-

ena (2008) and Fingleton et al. (2012) conducted impulse response analyses to a crisis shock

using full sample panel data, namely, the period including the crisis event. Aikman et al.

(2022) proposed a test to compare the mean of multi-year growth rates after the crisis with

those in other periods. Blanchard et al. (2015) produced a forecast based on a linear trend

model with an interval that accounts for uncertainty associated with the trend slope. The

e¤ect of crisis shock is also tested in the literature of causal inference. A leading example is

the synthetic control method (SCM) of Abadie et al. (2010) aiming to forecast a counter-

factual output by using control sample that had no e¤ects. Cavallo et al. (2013) examined

the impact of natural disasters on GDP by using control countries that had no disasters.

However, such a control sample is often unavailable when the crisis spreads worldwide.

In this study, we propose a formal testing procedure based on a time-series forecast to

assess whether the actual post-crisis output has returned to the counterfactual trajectory of

no crisis. We focus on a linear trend with persistent noise model as it is a simple yet widely

accepted model to capture the dynamics of log real GDP (Nelson and Plosser, 1982; Campbell

and Mankiw, 1987; Perron, 1989; Stock, 1991). We incorporate uncertainty associated

with future disturbances, parameter estimation, and their interactions, while the well-known

dichotomy of trend-stationary and random walk models is addressed by unit root pretesting.

We con�rm that this method achieves a good �nite sample coverage even when the persistence

1In empirical business cycle studies, this pattern may have been understood as asymmetricity (Neftci,
1984, Hamilton, 1989, Acemoglu et al., 1997, Clements and Krolzig, 2003, Morley and Piger, 2012) or
negative skewness (De Long and Summers, 1984; Bai and Ng, 2005; Plagborg-Møller et al., 2020; Jensen et
al. 2020; Iseringhausen et al., 2023).

2In the existing literature, economic resilience is de�ned as the capacity of an economy to recover quickly
from the e¤ect of shock (Noy and Yonson, 2018, Diop et al., 2021). The concept of resilience itself has been
popular and is increasingly so in many �elds of natural and social sciences such as engineering, psychology.
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parameter is close to one and the interval length equal to the model with good coverage.

This seemingly straightforward approach will shed a new light on the methodological

aspect of the aforementioned literature. First, our approach leaves the actual growth path

after the crisis completely unrestricted thus no model needs to be estimated using the post-

crisis data, circumventing estimation bias due to the data contaminated by the crisis. Second,

it is capable of conducting real-time inference as new data arrives. Third, it dispenses with

a cross-section of control countries that experienced no crisis impacts, ensuring applicability

to global crises. Fourth, it delivers a unit free measure of recovery patterns among countries

which might have had heterogenous e¤ects. Speci�cally, we propose a measure of shock

absorption de�ned by the bottom of standardized statistics and a measure of recovery as

the ratio of the actual cumulative recovery to the counterfactual cumulative loss from no

recovery. These tools o¤er a multifaceted outcome to evaluate economic resilience.

Our empirical analysis using the log real GDP of 18 advanced OECD countries reveals

that most countries were not resilient to the GFC shock and potential hysteresis e¤ects

are suggested. The recovery patterns are represented by L-shapes. However, during the

COVID-19 pandemic, the deep troughs were followed by fast recoveries to the counterfactual

pre-crisis growth path and they exhibited V-shape patterns. We also illustrate bivariate

associations of these measures with potential determinants of economic resilience suggested

by the literature. We show that determinants such as �nancial leverage and labor market

regulation have negative correlations with shock absorption and cumulative recovery mea-

sures, while correlations of government debt ratio with these measures are opposite across

the two crises. Furthermore, R&D spending, trade openness, and inequality have heteroge-

nous relationships with recovery measure across the two crises. Overall, some determinants

may have negative correlations with shock absorption and recovery across the two crises;

however, other factors vary in their associations, depending on the nature of the crisis.

The rest of this study is organized as follows. Section 2 explains the model and the

hypotheses. We also elaborate on the motivations and advantages of our approach compared

to the existing methods. In Section 3, we establish forecasting error variances for both the

trend-stationary and random walk models and describe a simple pretesting method. We

also provide quantitative measures of shock absorption and cumulative recovery. Section

4 conducts a Monte Carlo simulation to assess �nite sample properties of the forecasting

intervals. In Section 5, we present empirical analysis using the log real GDP of 18 advanced

OECD countries. Section 6 provides some concluding remarks.
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2 Motivation

Let yt be a time-series data such as economic output or employment at period t. The data is

available for t = 1; :::; T +H where t = T +H is the present period, while the crisis occurred

at a known date t = T . We call the sample for t 2 [1; T ] the pre-crisis period and that for
t 2 [T +1; T +H] the post-crisis period. The goal of this study is to assess whether the post-
crisis output yT+h has recovered the counterfactual growth path as if no crisis had occurred.

To this end, we follow the convention such as Nelson and Plosser (1982) and assume that yt
follows the linear trend and persistent noise model if no crisis had occurred.

yt = �+ �t+ ut; (1)

ut = �ut�1 + "t; (2)

where "t is the disturbance term assumed to follow i:i:d:N(0; �2) for t = 1; � � � ; T . The
coe¢ cients � and � in (1) are unknown �xed parameters for the intercept and the slope of

linear trend, respectively. The unknown persistence parameter � in (2) is assumed to lie in

the interval (�1; 1]. We assume u0 � N(0; �2=(1��2)) when j�j < 1 and u0 = 0 when � = 1.
There are several potential approaches to achieve our research goal. The �rst approach

investigates whether yt has a stochastic trend by using time-series data for t = 1; :::; T +H.

If the null hypothesis of � = 1 is not rejected, yt is considered to have a stochastic trend,

indicating that shocks may have permanent e¤ects. This provides indirect evidence of non-

resilient economy as the crisis could permanently decrease the level of yt. If � = 1 is rejected

in favor of j�j < 1, yt is considered trend stationary and any shocks have merely transitory
e¤ects, suggesting that the economy is resilient. However, such unit root tests for � = 1

notoriously have low power when the data has a structural break as it can signi�cantly

bias the persistence parameter estimate upwardly (Perron, 1989). This is likely if the entire

sample period is used. Instead, if the test is implemented using the pre-crisis sample only, out-

of-sample validity must be ensured. The same caveat applies to impulse response analyses

conducted by many studies (Cerra and Saxena, 2008, Fingleton et al., 2012), since estimates

of the persistence parameters using data with a break may have an upward bias.

Another time-series approach is to assess whether the model had a structural change at

the crisis and to separately estimate models for the pre- and the post- crisis periods. Figure

1 illustrates potential patterns of the post-crisis growth path.3 In Cases A, B and C, the

3See Martin (2012) and Fingleton et al. (2012) for similar presentation. Fingleton et al. (2012) introduced
�engineering resilience�and �ecological resilience�. The former means that the level catches up the original
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intercept � decreased, which resulted in a decline of yt at the crisis. However, the trend

slope � may have either increased (Case A), decreased (Case B) or unchanged (Case C).

Case A is considered resilient while Cases B and C are non-resilient. In Case D, the trend

slope decreased and the intercept changed in a speci�c manner so that is no abrupt level

shift occurred. This pattern may also be considered non-resilient. Therefore, one may assess

economic resilience by estimating the trend slope and the intercept before and after the

crisis, respectively. However, data is typically scarce for the post-crisis period and a certain

time must have elapsed to assess economic resilience. Also, the model speci�cation after the

crisis is highly uncertain and the linear model may not be relevant after the crisis.

When a panel data set which includes countries which had a crisis e¤ect (treated group)

and those which had no crisis e¤ect but have the same trend (control group) is available, a

more recent literature on causal inference o¤ers an additional perspective. For example, the

synthetic control method (SCM) proposed by Abadie and Gardeazabal (2003) and Abadie

et al. (2010) produces a counterfactual forecast of no crisis for the treated country, given a

sample of control group is available. The SCM uses a cross-section information of the control

group for the post-crisis period to produce a counterfactual forecast for the treated units. It

can avoid time-series modeling and estimation of the persistence parameters. For example,

Cavallo et al. (2013) examined the impact of natural disasters on GDP by using a group

of countries that had the same secular trends but no disasters. However, this method is

subject to some delay in obtaining data for all control countries. More importantly, it is not

applicable when the crisis had worldwide e¤ects, because no control countries are available.

The approach this study proposes uses a time-series technique to produce a counterfactual

forecast for the post-crisis output growth trajectory as if no crisis had occurred. Then,

at each horizon h, it assesses whether the actual output is included in the counterfactual

forecasting interval. Importantly, our approach leaves the actual growth path after the crisis

completely unrestricted and no model needs to be speci�ed for the typically short post-

crisis sample period. In addition, it is capable of conducting inference as new data arrives,

promptly judging economic resilience. We discuss some econometric issues in constructing

the counterfactual forecast interval from (1) and (2) in the next section.

trajectory, while the latter allows level shifts to a new stable equilibrium. We do not rely on explicit modelling
after the crisis and such concepts are not discussed in this study, although they can be assessed by inspecting
the recovery pattern as we do in Section 6.
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3 Forecasting methods

3.1 Trend-stationary model

We �rst consider forecasting interval produced by models (1) and (2) when j�j < 1 is assumed.
The model can be e¢ ciently estimated by a feasible generalized least squares (FGLS) or the

maximum likelihood method. We follow Ng and Vogelsang (2002) and Falks and Roy (2005)

and use the Prais-Winsten FGLS (Prais and Winsten, 1954). Let the vector form of (1) be

yt = z
0
t� + ut;

where zt � [1; t]0 and � � [�; �]0. If we denote the regressor matrix by Z = [z01; :::; z0T ]0, the
Prais-Winsten FGLS estimator is

�̂ = (Z 0
̂�1Z)�1(Z 0
̂�1y);

where


̂�1 =

26666666664

1 ��̂ 0 0

��̂ 1 + �̂2 0 0

0 ��̂ . . . ��̂ 0

0 0 1 + �̂2 ��̂

0 0 ��̂ 1

37777777775
;

while � is estimated as the �rst order sample autocorrelations of ût = yt�z0t�̂
(0)
for t = 1; :::; T ,

where �̂
(0)
is an initial estimate by ordinary least squares (OLS). The procedure may be

iterated after we obtain �̂ until it converges.

Once � and � are estimated, the h period ahead forecast is constructed by the so-called

best linear unbiased prediction proposed by Goldberger (1962)4:

ŷT+hjT = z
0
T+h�̂ + �̂

h(yT � z0T+h�̂):
4An alternative forecasting method of the trend-stationary model is to use a reparametrized version of

models (1) and (2), the so-called Durbin�s regression

yt = �
� + ��t+ �yt�1 + "t,

where �� = �(1� �) + �� and �� = �(1� �). Ng and Vogelsang (2002) and Falk and Roy (2005) compared
�nite sample mean squared errors of these forecasts and concluded that the Prais-Winsten FGLS gives the
best performance. In Appendix B, we compare the coverage rate and the average length of forecast intervals
of these methods.
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The forecasting error "̂T+hjT = yT+h � ŷT+hjT becomes

yT+h � ŷT+hjT = z0T+h� + uT+h � z0T+h�̂ � �̂h(yT � z0T �̂);
=

Ph�1
l=0 �

l"T+h�l + (z
0
T+h � �hzT )(� � �̂)

+(�h � �̂h)uT + (�h � �̂h)zT (� � �̂): (3)

The �rst term of (3) captures intrinsic future disturbances "T+h�l for l = 1; :::; h� 1 whose
e¤ect is unavoidable in any forecasting exercises. The second to the fourth terms pertain to

e¤ects of parameter estimation errors which diminish as T !1. More precisely, the second
term comes from the estimate �̂ and the third term pertains to �̂. The fourth term appears

as an interaction between them. The e¤ect of parameter estimation on the variance has been

discussed at length by, for example, Sampson (1991) and Clements and Hendry (2001).

Based on this expression, the following result for the asymptotic forecasting variance is

obtained. Note that if an estimator �̂ has an asymptotic result
p
T (�̂ � �) d! N(0;��) with

�� a �xed covariance matrix as T !1, we call T�1�� the asymptotic variance of �̂ denoted
by AV ar(�̂) and for a simple random variable ", AV ar(") coincides with V ar(").

Theorem 1 Suppose yt for t = 1; :::; T + H is generated by (1) and (2) with j�j < 1. Let
the asymptotic forecast error variance of (3) at a horizon h = 1; :::; H constructed at t = T

be fT+hjT . Then,

fT+hjT = C1T;h + C2T;h + C3T;h + C4T;h; (4)

uniformly in h where

C1T;h = �2
Ph�1

l=0 �
2l;

C2T;h = (zT+h � �hzT )0AV ar(�̂)(zT+h � �hzT );
C3T;h = u2T � AV ar(�̂h);
C4T;h = AV ar(�̂h)� z0TAV ar(�̂)zT :

See Appendix A for a proof. By using an estimate for the forecast variance under Gaussian

errors, the trend-stationary forecast interval can be constructed by

ŷT+hjT � z�=2
q
f̂T+hjT ; (5)

where z�=2 is the 100(1 � �=2) percentile of the standard normal distribution and f̂T+hjT
is an estimate of fT+hjT . We suggest plugging \AV ar(�̂) = (û0
̂�1û=T )(Z 0
̂�1Z)�1 into

AV ar(�̂), \AV ar(�̂h) = h2�̂2(h�1)\AV ar(�̂) into AV ar(�̂h) by using the delta method, and
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\AV ar(�̂) = (1 � �̂2)=T . Falk and Roy (2005) proposed a forecasting interval by using

the median bias-corrected estimate for � proposed by Roy and Fuller (2001). However, our

separate investigation reveals that although the bias-corrected estimate can improve forecast

interval of the trend-stationary model, it may not improve �nite sample properties of the

pretesting intervals. Hence, we dispense with bias-corrections in this study.

3.2 Random walk model

Empirical studies such as Nelson and Plosser (1982), Campbell and Mankiw (1987) and Stock

(1991) provide evidence that � = 1 for the U.S. real GDP. In this subsection, we consider

a random walk model in which � = 1 is imposed. This will help us reduce the number

of parameters thus the estimation e¤ect, while keeping the point forecasts unconditionally

unbiased. By plugging � = 1 in (2) and combining it with (1), we get the following model

yt = � + yt�1 + "t:

Furthermore, by moving yt�1 to the left-hand-side, we obtain

yt � yt�1 = � + "t: (6)

This model has only one unknown coe¢ cient �. Also, as the errors are spherical, the e¢ cient

OLS estimate for � is simply obtained by the sample mean of the dependent variable such

that e� = 1
T�1

PT
t=2(yt � yt�1) so that V ar(e�) = �2

T�1 .

The h period ahead forecast of yT+h is

eyT+hjT = yT + he�: (7)

When � = 1 the forecast error of the random walk model becomes

yT+h � eyT+hjT = yT + h� +
Ph�1

l=0 "T+h�l � yT � he�;
=

Ph�1
l=0 "T+h�l + h(� � e�): (8)

Similar to (3), the �rst term pertains to the intrinsic future disturbances while the second

term refers to the parameter estimation e¤ect.

Theorem 2 Suppose yt for t = 1; :::; T +H is generated by (1) and (2) with � = 1. Let the

asymptotic forecast variance of (8) at horizon h = 1; :::; H constructed at t = T be gT+hjT .

Then, it becomes

gT+hjT = D1T;h +D2T;h; (9)
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uniformly in h where

D1T;h = h�
2 and D2T;h = h2

�2

T � 1 : (10)

Term D1T;h represents the variance of intrinsic future disturbances and increases at rate

h even for a large T while D2T;h is the e¤ect of parameter estimation which diminishes as T

increases. Under the Gaussian assumption on "T+h in (2), the forecast interval becomes

eyT+hjT � z�=2qĝT+hjT ; (11)

where ĝT+hjT is an estimate for gT+hjT and is constructed based on (9) and (10) with �2

replaced by e�2 = 1
T�1

PT
t=2(yt � yt�1 � e�)2.

3.3 Pretesting method

As we will investigate in Section 4 via Monte Carlo simulation, the forecast interval produced

by the trend-stationary model su¤ers from undercoverage if � is one or close to one; hence,

the random walk model is useful although it contains a risk of providing an excessively large

interval if j�j < 1. How to reconcile this dichotomy in the context of interval forecasting

would be of interest.5 However, in this study, we follow Ng and Vogelsang (2002) and take

a simple approach to combine the two models by a unit root pretesting in the pre-crisis

period.6 Speci�cally, standard unit root tests of Dickey and Fuller (1979) or Phillips and

Perron (1988) can be used with a model including intercept and time trend

�yt = �+ �t+ �yt�1 +
Pd

j=1 �j�yt�j + error; (12)

for t = d + 2; :::; T . The null hypothesis H0 : � = 0 against an alternative hypothesis

H1 : � < 0 are tested. If H0 is rejected then the trend-stationary model is used and

otherwise the random walk model is used. Denote the variance of this pretesting forecast by

f �T+hjT = IpUR;T<�fT+hjT + (1� IpUR;T<�)gT+hjT ;

where IpUR;T<� is the indicator which takes one when the p-value of the unit root test (pUR;T )

is smaller than the pre-speci�ed nominal level �. The estimate for the variance is also denoted

5Canjels and Watson (1997) discussed an asymptotic approximation of the OLS and GLS estimators
when � is local to one. Vogelsang (1998) and Perron and Yabu (2009) provided a test for the trend slope
parameter � that is valid either when j�j < 1 or � = 1.

6Hansen (2010) introduced a model averaging in the same model but the AR parameter is local-to-unity.
He proposes to average the estimators with weights determined by Mallows (1973) criterion, however, as far
as we know, how to construct forecast interval for such an averaged forecast is still an open question.
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by f̂ �T+hjT and computed by

f̂ �T+hjT = IpUR;T<�f̂T+hjT + (1� IpUR;T<�)ĝT+hjT :

Note that this estimator is also interpreted as a shrinkage estimate of the forecast variance

in which � is shrunk to one when it is considered close to one. We investigate �nite sample

properties of this method in the following section via Monte Carlo simulation.

4 Testing and quantifying economic resilience

The forecasting interval discussed above can be plotted as a counterfactual alongside the

actual output after the crisis. This illustrates information regarding whether the actual

output has returned to the pre-crisis trajectory. A more formal approach is to formulate the

null hypothesis that the actual value reached the counterfactual value y�T+h:

H0 : yT+h � y�T+h; (13)

against the alternative hypothesis that the actual value remains below it

H1 : yT+h < y
�
T+h; (14)

for h = 1; 2; :::; H. The following standardized test statistic is considered

sh =
yT+h � ŷ�T+hjTq

f̂ �T+hjT

: (15)

This enables us to calculate the p-value at the hth horizon for the null hypothesis (13) against

the alternative hypothesis (14). The null hypothesis is rejected if �(sh) < � where �(�) is the
cumulative standard normal distribution function and � is the level of signi�cance. The �rst

horizon at which �(sh) exceeds � is considered the recovery date at the 100�% signi�cance

level. We can also directly plot sh for di¤erent economies so that their recovery patterns can

be compared by using unit-free measures.7

Let us introduce two useful metrics constructed by sh. The �rst metric measures the

depth of the crisis. It can alternatively be interpreted as shock absorption as an economy

experiencing a deep trough indicates low ability of shock absorption. To this end, we de�ne

the bottom of the test statistics by s� = min
1�h�h0

sh and the trough date by k� = arg min
1�h�h0

sh

7More precisely speaking, this method is subject to the multiple testing problem, as are many exercises
of impulse response analyses. However, this issue is beyond the scope of this study.
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where h0 < H is a certain horizon until which the bottom is experienced. This cuto¤ point

h0 is needed in practice because if the actual output keeps declining, no trough is identi�ed.

The second measure pertains to cumulative recovery from the k�th to the Hth horizon.

We de�ne the following RQH statistic:

RQH = 1�
�
PH

h=k� sh
(H � k�)� js�j ;

where s� < 0. Note that if s� � 0, no crisis e¤ect is present and recovery is not de�ned. The
denominator of the second term represents the total cumulative loss in a hypothetical econ-

omy with no recovery after the trough up to the Hth horizon and the numerator computes

the cumulative economic loss of the actual economy. Subtracting it from one gives a ratio

of actual recovery to potential loss of no recovery. Figure 2 illustrates the concept of RQH
where the numerator and the denominator of the second term are depicted by the green

area and by the sum of yellow and green areas, respectively, so that RQH is the ratio of the

yellow area to the sum of yellow and green areas. It becomes closer to zero or even negative

when the economy lingers, while it may take a positive value close to one or even larger than

one when the economy shows a quick recovery. In the latter case, we can judge that the

economy is resilient. Furthermore, these measures also facilitate us to conduct cross-country

comparisons, especially when the output is measured in di¤erent currency units.

5 Monte Carlo simulation

In this section, we conduct a Monte Carlo simulation to study �nite sample properties of the

proposed methods. The size and power of the test for (13) versus (14) are assessed by the

coverage rate and the length of the forecast interval for simplicity, respectively. We consider

the two-sided interval but in practice the one-sided test is used.

Throughout this section, the data is generated by the following model:

yt = �+ �t+ ut;

ut = �ut�1 + "t;

for t = 1; :::; T + H where u0 � N(0; �2=(1 � �2)) when j�j < 1 and u0 = 0 when � = 1.

"t is a quasi random variable drawn from the standard normal distribution independently

for all t. In each replication, we use the generated data yt for t = 1; :::; T and construct the

90% two-sided forecasting intervals by the trend-stationary model, the random walk model,

and the pretesting method for t = T + 1; :::; T +H. The pretest is conducted by regression

10



(12) with the lag length selected by Ng and Perron (2001) and the 5% critical value is

used as the decision rule. The number of replications is set at 5,000. We are interested

in how the results vary with di¤erent values of � especially when it is close to one, thus

� = f0:0; 0:5; 0:8; 0:9; 0:95; 1:0g is considered. We also investigate the e¤ect of in-sample
size by comparing results with T = 50; 100; 200. We set � = 1 and � = 1 for the entire

simulations; however, these values do not qualitatively a¤ect our conclusion. The results are

presented at h = 1; 10; 25; 50.

The left four columns of Table 1 show the coverage rate when T = 50. The coverage

rate of the trend-stationary model is close to the nominal level of 0.90 when � is not larger

than 0:5. However, it falls considerably below the nominal level as � increases. Conversely,

the coverage rate of the random walk model is very close to the nominal level when � = 1;

however, it exceeds the nominal level as � gets smaller and reaches one for long horizons.

The pretesting method can compromise these models. When � is not larger than 0:5, the

coverage rate tracks that of the trend-stationary model. When � is one, it is close to that

of the random walk model. Otherwise, the coverage rate becomes some values between the

trend-stationary and random walk models. Importantly, the coverage rate of the pretesting

method is very close to the nominal level in all cases considered. Investigating the size is not

su¢ cient as a correct size may be achieved at a cost of low power.

The right four columns of Table 1 show the average length of the forecasting interval over

the replications. The length of the random walk forecast increases as the horizon increases

regardless of �. The length of the trend-stationary forecast stays �at even when h increases

if � � 0:5, however, the interval widens as h increases when � is larger than 0:5. This

re�ects the e¤ect of parameter estimation errors as pointed out by Sampson (1991) and

Clements and Hendry (2001), although the e¤ect may be understated because the forecast

interval excessively undercovers for a large �. Similar to the coverage rate, the length of the

pretesting method is very similar to that of the trend-stationary forecast when � = 0:0 or 0:5

and it is similar to the random walk forecast when � is larger. Thus, the pretesting method

must have a decent power.

The left four columns of Table 2 present the coverage rate when T = 100. It shows similar

features to the case of T = 50; however, the coverage rates of the trend-stationary model

and accordingly the pretesting method improve when � < 1 because the e¤ect of parameter

estimation errors is weakened with a larger T . We also conducted the same experiment with

T = 200, but the results are very similar thus are not reported. The right four columns

of Table 2 present the average lengths when T = 100. In the borderline case of � = 0:8,
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the length of the pretesting method is more similar to the trend-stationary model than the

random walk model, because the unit root test has a higher power. Because the former is

shorter, a higher power is expected as T increases. Also, the length of the trend-stationary

model becomes even shorter as T increases, because the e¤ect of parameter estimation errors

is reduced. The results when T = 200 are similar to those of T = 100 thus are not reported.

6 Empirical analysis

We use the natural logarithm of real GDP (in constant local currency prices, on a quarterly,

seasonally adjusted basis) data spanning from 1995Q1 to 2023Q3 for 18 selected OECD coun-

tries8: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland,

Italy, Japan, the Netherlands, Norway, Spain, Sweden, Switzerland, the United Kingdom,

and the United States.9 The data is sourced from the OECD Main Economic Indicator.

Figure 3 illustrates that they commonly experienced a sudden drop and aftermath recovery

during and after the GFC in 2007-2008 and the COVID-19 pandemic. In this section, we

apply the proposed methods to scrutinize whether the GDP reattained its counterfactual

pre-crisis growth trajectory. We also investigate whether shock absorption and recovery are

heterogenous across di¤erent crises and countries. If so, we brie�y explore how these charac-

teristics are associated with potential determinants of economic resilience suggested by the

existing literature (Duval and Vogel, 2008, Jollès et al., 2023).

With these objectives in mind, we �rst assess whether the economy has recovered its

pre-crisis growth trajectory by plotting counterfactual forecast intervals after the GFC. We

choose the crisis onset at 2008Q1 and use data from 1995Q1 to 2007Q4 for model estimation.

The 90% two-sided forecast interval is constructed using the pretesting method from 2008Q1.

In Figure 4, it is evident that, following the GFC, most countries did not manage to return to

their pre-crisis growth trajectory at the 5% one-sided signi�cance level, although exceptions

include Germany, Japan, Norway, and Switzerland as they crossed the lower bound of the

forecast interval. For the U.S. and Canada, the actual path runs almost parallel to the

counterfactual trajectory, suggesting that the crisis in�uenced the level but not the growth

rate of GDP. In several European countries, such as Spain and Italy, the actual GDP path

further declined compared to the counterfactual forecast, resulting in decreases in both level

8Our sample consists of the same countries investigated by Duval and Vogel (2008) within the pool of
20 OECD countries minus New Zealand and Portugal. New Zealand is excluded due to the unavailability
of several non-GDP variables crucial for the following analysis. Portugal is excluded because its real GDP
series, characterized by an exceptionally smooth trend and a distinctive pattern.

9The real GDP data is available only after 1996Q1 in Italy and Netherland.
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and growth rate. One may argue that this is caused by other subsequent shocks after the

GFC such as the European sovereign debt crisis; however, disentangling these e¤ects falls

beyond the scope of our study. Figure 5 illustrates the counterfactual forecast after the

COVID-19, with the crisis onset set at 2019Q3. We use data from 2010Q1 to 2019Q2 for

model estimation. The �gures generally show a deeper trough but faster recovery compared

to the GFC. Interestingly, all countries, except for Austria, France, Germany, Japan, and

the U.K., have re-established the pre-crisis growth path. It is also worth noting that the

actual GDP level surpassed the point forecast in many countries such as Australia, Belgium,

Denmark, Ireland, Italy, Netherlands, Norway, Sweden, and Switzerland.

The above observation is substantiated by the proposed absorption statistics (s�) and the

recovery statistics (RQH). We choose H = 24 up to 2013Q4 after the GFC and H = 18 up

to 2023Q3 after the COVID-19, however, these speci�c choices do not a¤ect our qualitative

results. We set the maximum horizon by which the trough is determined h0 = 10 in both

cases. Table 3 provides a summary of these statistics for each country after the GFC and the

COVID-19, respectively. For the GFC, the absorption statistic has mean -6.31 and the mean

of recovery statistics is 0.23. For the COVID-19, the mean of absorption statistics (-13.24) is

smaller, while the mean of the recovery statistics (0.82) is larger than the GFC. This suggests

that the COVID-19 resulted in a more severe downturn followed by a faster recovery. Figure

6 plots the standardized test statistics (15) after the two crises for each country. The lines

with black dots and white dots depict the GFC and the COVID-19, respectively, while the

dotted line shows the critical value of the one-sided hypothesis at the 5% signi�cance level. In

most countries the standardized statistics after the GFC exhibit L-shape patterns and rarely

crossed the critical value so that they were not resilient to the GFC shock and potential

hysteresis e¤ects are suggested. However, during the COVID-19 pandemic, deep declines

were followed by a rapid increase and they exhibited V-shape patterns.

Our �nal agenda is to investigate the factors in�uencing the heterogeneity of resilience

across di¤erent crises and countries. We select six factors pertaining to �scal policies, �-

nancial leverage, innovation and technology, �exible labor markets, global connectivity, and

inequality. We use data of general government debt outstanding per GDP, debt-to-equity

ratio of �nancial corporations, country-level research and development (R&D) expenditures

per GDP, the employment protection legislation (EPL) indicator published by the OECD,

trade openness (the sum of exports and imports as a percentage of GDP), and the Gini index.

Given the limitation of our sample to 18 countries, conducting a comprehensive analysis to

identify the causal e¤ects is challenging due to the presence of various confounding factors.
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In this study, we solely present plots of bivariate regression lines, i.e. correlations.

Figure 7 illustrates the bivariate associations of our absorption and recovery measures

with their potential determinants of economic resilience suggested by the literature. The left

panels consider absorption and the right panels correspond to recovery. For panel A, the gov-

ernment debt ratio exhibits negative associations with both measures during the COVID-19,

whereas the relations are opposite over the GFC. This contrast may arise because �scal space

was a more crucial characteristic during the COVID-19 in which government support was

taken for granted, whereas government�s involvement was more heterogenous and proxied

by the debt outstanding. Panel B shows that �nancial leverage has a negative association

with absorption and recovery in both crises. This is as expected and supported by existing

literature. Note that panel B excludes Japan, as it is an in�uential observation with high

�nancial leverage and relatively robust recovery and drives the entire relationship. Further-

more, panel C shows that the R&D spending has a positive association with both measures

after the GFC but the relation is not clear during the COVID-19. In panel D, the EPL

indicator ranging from 0 to 6 with a larger value indicating more strict regulation. The re-

sults are straightforward in that weaker regulation is associated with higher absorption and

faster recovery. In panel E, greater trade openness aids in shock absorption in both crises,

while its impact on recovery varies. After the GFC, the prolonged worldwide demand stag-

nation caused a slower recovery for more globally connected countries, while trade openness

supported supply disruption and facilitated recovery after the COVID-19. Finally, panel F

shows that inequality weakens absorption in both crises; however, its relation with recovery

may seem opposite in the two crises. The GFC is characterized by damages to wealthy

individuals who may gain relatively quicker recovery, while poorer individuals were a¤ected

more seriously and inequality may hinder recovery after the COVID-19. Overall, potential

determinants such as �nancial leverage and labor market regulation may have negative cor-

relations with shock absorption and recovery across the two crises; however, other factors

vary in their associations, depending on the nature of the crisis. Note that the results are

based on simple correlations with relatively small sample size and further investigations into

these determinants will be an important focus for future research.

7 Conclusion

Motivated by the recent business cycle characteristics of a sharp drop and protracted recov-

ery accentuated during the GFC and the COVID-19 pandemic, we proposed a formal testing

procedure to investigate economic resilience based on a time-series counterfactual forecast-
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ing interval of a linear trend with persistent noise model. It assesses whether the actual

post-crisis output has returned to the counterfactual trajectory of no crisis. Our approach

remains applicable even when a cross-section of control group is unavailable and circumvents

potential bias in time-series regressions using data that includes structural breaks. It also

has several advantages over the existing methods employed under similar motivation. Fur-

thermore, we provide two useful measures pertaining to shock absorption and cumulative

recovery. Our empirical investigation by using the log real GDP of 18 advanced countries

reveals that most countries were not resilient to the GFC shock, while deep troughs were fol-

lowed by fast recoveries after the COVID-19 pandemic and they exhibited V-shape patterns.

We investigated the bivariate associations of these measures with potential determinants of

economic resilience. Determinants such as the �nancial leverage and the labor market reg-

ulation have negative correlation with these measures; however, other factors vary in their

associations, depending on the nature of the crisis.

While this endeavor hopefully inspires further research investigating economic resilience

after global shocks, potential �elds of applications extend beyond macroeconomics to include

labor, regional, development and climate economics as well as political science. This study

would also have spillover to various other disciplines such as ecology, psychology, sociology,

environmental engineering, social engineering, and public health, to name a few. At the

same time, we acknowledge several signi�cant limitations. From an econometric perspective,

our approach to reconciling trend-stationary and random walk forecasting models may be

inadequate due to the bimodality in the sampling distribution of forecasting errors, as pointed

out by Ng and Vogelsang (2002). The linear trend speci�cation may be too simplistic to

apply the method to various measures of interest. For example, the presence of structural

changes in the trend function in the pre-crisis period must be carefully assessed for a more

comprehensive empirical analysis. Secondly, from the viewpoint of causal inference, the

e¤ects of subsequent shocks during the post-crisis period must be ruled out. For example,

the European Debt Crisis and Brexit must have a¤ected those countries during the post-

GFC crisis period so that the e¤ects of the GFC may be overestimated. Nevertheless, this

study should represent an initial step towards addressing the important and long-standing

research objective of uncovering the economic resilience in an increasingly connected and

heterogenous global economy.

15



Appendix A. Proof of Theorems

Proof of Theorem 1: The forecasting error "̂T+h = yT+h � ŷT+hjT is

yT+h � ŷT+hjT = z0T+h� + uT+h � z0T+h�̂ � �̂h(yT � z0T �̂);
= uT+h + z

0
T+h(� � �̂)� �̂h(yT � z0T �̂);

=
Ph�1

l=0 �
l"T+h�l + z

0
T+h(� � �̂) + �huT � �̂h(yT � z0T �̂);

=
Ph�1

l=0 �
l"T+h�l + z

0
T+h(� � �̂) + (�h � �̂h)zT (� � �̂)

��hzT (� � �̂) + (�h � �̂h)uT ;
=

Ph�1
l=0 �

l"T+h�l + (zT+h � �hzT )0(� � �̂)
+(�h � �̂h)uT + (�h � �̂h)z0T (� � �̂);

= I + II + III + IV;

uniformly in h. We now consider the variance of "̂T+h. Because �̂ and �̂ are asymptotically
independent as the information matrix is block diagonal, ACov(I; II) = ACov(I; IV ) =
ACov(II; III) = ACov(III; IV ) = 0. Therefore,

AV ar("̂T+hjT ) � fT+hjT = AV ar(I) + AV ar(II) + AV ar(III) + AV ar(IV );
where

AV ar(I) = �2
Ph�1

l=0 �
2l � C1T;h;

AV ar(II) = (zT+h � �hzT )0AV ar(�̂)(zT+h � �hzT ) � C2T;h:
For AV ar(III) and AV ar(IV ), we obtain

AV ar(III) = u2T � AV ar(�̂h) � C3T;h;
AV ar(IV ) = AV ar(�̂h)� z0TAV ar(�̂)zT � C4T;h;

which completes the proof.�
Proof of Theorem 2: When � = 1, the forecast error becomes

e"T+hjT = yT+h � eyT+hjT ;
= yT + h� +

Ph�1
l=0 "T+h�l � yT � he�;

=
Ph�1

l=0 "T+h�l + h(� � e�);
= I + II;

uniformly in h. Because I and II are independent,

AV ar(e"T+hjT ) � gT+hjT = AV ar(I) + AV ar(II);
where

AV ar(I) = h�2 � D1T;h;
and

AV ar(II) = h2
�2

T � 1 � D2T;h;

which completes the proof.�
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Appendix B. Comparison between FGLS and OLS forecast intervals

In this Appendix, we compare the coverage properties of the forecasting interval pro-
duced by the best linear unbiased prediction estimated by the Prais-Winsten FGLS with the
forecasting interval produced by Durbin�s regression estimated using the OLS. We also inves-
tigate the coverage properties of the pretesting method. Durbin�s regression reparametrizes
models (1) and (2) by subtracting the lagged equation multiplied by � from model (1):

yt � �yt�1 = �(1� �) + �[t� �(t� 1)] + "t;
or

yt = �� + ��t+ �yt�1 + "t;

= x0t� + "t; (A.1)

where �� � �(1 � �) + ��, �� � �(1 � �), xt � [1; t; yt�1]
0 and � � [��; ��; �]0. Because

model (A.1) has spherical errors "t, the OLS estimation gives the e¢ cient estimator for the
pseudo-true coe¢ cient �. By using matrix notations X = [x2; :::; xT ]

0, y = [y2; :::; yT ]
0 and

" = ["2; :::; "T ]
0, (A.1) is written as

y = X� + ":

The OLS estimator for the pseudo-true coe¢ cients and their covariance matrix are given by
�� � [���; ���; ��]0 = (X 0X)�1X 0y and �2(X 0X)�1, respectively.
Let �xT+hjT = [1; T + h; �yT+h�1jT ]0 for h = 1; 2; ::: where �yT jT = yT . The h period ahead

forecast is recursively constructed by

�yT+hjT = ��� + ��
�
(T + h) + ���yT+h�1jT ;

= �x0T+hjT
��: (A.2)

As shown in Appendix C, the forecasting error �"T+hjT = yT+h � �yT+hjT becomes

yT+h � �yT+hjT = x0T+h� + "T+h � �x0T+hjT��;
=

Ph�1
l=0 �

l"T+h�l +
Ph�1

l=0 �
lx0T+h�l(� � ��)

+
Ph�1

l=0 (��
l � �l)"T+h�l +

Ph�1
l=0 (��

l � �l)x0T+h�l(� � ��): (A.3)

Based on this expression, the following result for the asymptotic variance of forecasting error
of the Durbin�s regression model is obtained.
Theorem A Suppose yt for t = 1; :::; T + H is generated by (1) and (2) with j�j < 1.

Let the asymptotic forecast error variance of (A.3) at a horizon h = 1; :::; H constructed at
t = T be bT+hjT . Then,

bT+hjT = B1T;h +B2T;h +B3T;h +B4T;h; (A.4)

uniformly in h where

B1T;h = �2
Ph�1

l=0 �
2l;

B2T;h =
Ph�1

l=0

Ph�1
k=0 �

l+kx0T+h�lAV ar(
��)xT+h�k;

B3T;h = �2
Ph�1

l=0 AV ar(��
l);

B4T;h =
Ph�1

l=0

Ph�1
k=0 ACov(��

l; ��k)x0T+h�lAV ar(
��)xT+h�k:
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See Appendix C for a proof. The forecast interval can be constructed by

�yT+hjT � z�=2
q
�bT+hjT ;

where �bT+hjT is an estimate of bT+hjT by plugging ÂV ar(��) = ��2(X 0X)�1 with ��2 = (y �
X��)0(y�X��)=T , ÂV ar(��l) = l2��2(l�1)ÂV ar(��) with �� is the OLS estimator, ÂCov(��l; ��k) =
lk��f(l�1)+(k�1)gÂV ar(��) with ÂV ar(��) = 1���2

T
by using the delta method.

In the following, we conduct a Monte Carlo simulation under the same setup as in Section
4 to compare the above method (denoted by TS-OLS in tables) and Prais-Winsten FGLS
(denoted by TS-FGLS) as well as their pretesting versions (denoted by PT-OLS and PT-
FGLS, respectively). Table A1-a gives the results when T = 50. The coverage rate of TS-OLS
is very close to the nominal level 0.90 when � = 0:0 and 0:5; however, it shows signi�cant
undercoverage as � becomes large. This feature is shared with TS-FGLS, although the
undercoverage is somewhat more severe. As a result, the average length of TS-OLS is larger
than TS-FGLS. In either case, the coverage rates of solely using trend-stationary models
are too low. If we use the pretesting version, PT-OLS gives much better coverage rate
for larger values of �. This also occurs with the pretesting method using the FGLS (PT-
FGLS) investigated in Section 4. A slight di¤erence can be seen in the average length, in
which PT-FGLS yields a little tighter interval than PT-OLS. Table A1-b provides the results
when T = 100. Again, the coverage rate of TS-OLS is a little better than the TS-FGLS;
however, they are too low. The coverage rate becomes very close to the nominal level for
both methods when pretesting is involved. The length of PT-OLS is somewhat larger than
PT-FGLS. Therefore, this justi�es our use of the pretesting version of Prais-Winsten FGLS
in our main analysis.
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Appendix C. Proof of Theorem A

The forecasting error �"T+hjT = yT+h � �yT+hjT of the Durbin�s regression model is

yT+h � �yT+hjT = x0T+h� + "T+h � �x0T+hjT �̂;
= x0T+h� + "T+h � x0T+h�̂ + (x0T+h � �x0T+hjT )�̂;
= x0T+h(� � ��) + �̂(yT+h�1 � �yT+h�1jT ) + "T+h; (A.5)

for h = 1; 2; :::H uniformly in h, because

(x0T+h � �x0T+hjT )�̂ = [0 0 yT+h�1 � �yT+h�1jT ]

26664
���

��
�

��

37775 ;
= ��(yT+h�1 � �yT+h�1jT ):

The second term of (A.5) has a lag of �"T+hjT or �"T+h�1jT = yT+h�1 � �yT+h�1jT . Recursively
plugging a lag of (A.5) will yield,

yT+h � �yT+hjT = x0T+h(� � ��) + ��fx0T+h�1(� � ��) + ��(yT+h�2 � �yT+h�2jT ) + "T+h�1g+ "T+h;
= x0T+h(� � ��) + ��x0T+h�1(� � ��) + ��2x0T+h�2(� � ��)

+ � � �+ ��h�1x0T+1(� � ��) + ��h(yT � yT )
+"T+h + ��"T+h�1 + ��

2"T+h�2 + � � �+ ��h�1"T+1;
=

Ph�1
l=0 ��

l"T+h�l +
Ph�1

j=0 ��
lx0T+h�l(� � ��);

=
Ph�1

l=0 �
l"T+h�l +

Ph�1
l=0 �

lx0T+h�l(� � ��)
+
Ph�1

l=0 (��
l � �l)"T+h�l +

Ph�1
l=0 (��

l � �l)x0T+h�l(� � ��);
= I + II + III + IV:

We now consider the variance of �"T+hjT . Because �� and "T+l for l � 1 are independent,
ACov(I; II) = ACov(I; IV ) = ACov(II; III) = ACov(III; IV ) = 0. Furthermore, if we
use a consistent estimate e� for �, ACov(I; III) = ACov(II; IV ) = 0. Therefore,

AV ar("̂T+hjT ) � bT+hjT = AV ar(I) + AV ar(II) + AV ar(III) + AV ar(IV );
where

AV ar(I) = �2
Ph�1

l=0 �
2l � B1T;h;

AV ar(II) =
Ph�1

l=0

Ph�1
k=0 �

lx0T+h�lAV ar(
��)xT+h�k�

k � B2T;h:
For AV ar(III) and AV ar(IV ), we obtain

AV ar(III) = �2
Ph�1

l=0 AV ar(��
l) � B3T;h;

AV ar(IV ) = �2
Ph�1

l=0

Ph�1
k=0 ACov(��

l; ��k)x0T+h�lAV ar(
��)xT+h�k � B4T;h;

which completes the proof.�
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Figure 1. Patterns of Recovery

Case A. resilient Case B. non-resilient

time

output

Case C. non-resilient Case D. non-resilient

Figure 2. The RQH Statistic of Cumulative Recovery
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Table 1. Coverage Rate and Average Length of Forecast Intervals (T = 50)
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Table 2. Coverage Rate and Average Length of Forecast Intervals (T = 100)
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Figure 3. Log Real GDP: From 1995Q1 to 2023Q3
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Figure 4. Counterfactual Forecast Interval after GFC
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Figure 5. Counterfactual Forecast Interval after COVID-19
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Table 3. Absorption (s�) and Recovery (RQH) Statistics

GFC COVID-19

absorption recovery absorption recovery

Australia -2.19 0.12 -11.34 0.74

Austria -5.78 0.20 -16.68 0.68

Belgium -5.75 0.25 -22.97 0.85

Canada -6.29 0.30 -12.97 0.75

Denmark -4.13 0.23 -6.23 0.94

Finland -6.03 0.13 -3.95 0.75

France -6.81 0.18 -25.17 0.78

Germany -4.74 0.53 -8.80 0.63

Ireland -3.93 0.02 -0.59 1.70

Italy -6.05 0.18 -16.45 0.87

Japan -6.03 0.53 -13.23 0.50

Netherlands -7.75 0.08 -9.95 0.86

Norway -2.76 0.16 -9.30 0.69

Spain -21.01 0.08 -17.79 0.75

Sweden -6.03 0.30 -5.89 0.79

Switzerland -3.11 0.44 -10.28 0.86

U.K. -10.88 0.15 -35.94 0.75

U.S. -6.32 0.18 -10.82 0.83

AVE -6.31 0.23 -13.24 0.82

SD 4.14 0.15 8.43 0.24
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Figure 6. Standardized Statistics
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Figure 7. Associations of Economic Resilience with Potential Determinants
A. Government Debt

B. Financial Leverage

C. R&D Spending
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D. Labor Market Regulation

E. Trade Openess

F. Inequality
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Table A1-a. Coverage Rate and Average Length
of Forecasting Intervals (T = 50)

Coverage rate Average length
h=1 h=10 h=25 h=50 h=1 h=10 h=25 h=50

ρ=0.0
TS­FGLS 0.90 0.89 0.90 0.90 3.40 3.48 3.67 4.08
TS­OLS 0.90 0.89 0.90 0.90 3.44 3.52 3.71 4.14
PT­FGLS 0.90 0.89 0.90 0.90 3.40 3.48 3.67 4.08
PT­OLS 0.90 0.89 0.90 0.90 3.44 3.52 3.71 4.14

ρ=0.5
TS­FGLS 0.88 0.87 0.85 0.85 3.40 4.19 4.64 5.60
TS­OLS 0.89 0.87 0.86 0.86 3.44 4.30 4.82 5.91
PT­FGLS 0.88 0.88 0.86 0.86 3.42 5.01 6.45 8.81
PT­OLS 0.88 0.88 0.87 0.87 3.46 5.09 6.58 9.03

ρ=0.8
TS­FGLS 0.88 0.80 0.79 0.77 3.39 5.86 6.95 8.90
TS­OLS 0.89 0.81 0.80 0.79 3.43 6.27 7.84 10.62
PT­FGLS 0.89 0.92 0.93 0.92 3.46 10.49 18.01 29.06
PT­OLS 0.89 0.92 0.92 0.92 3.46 10.51 18.05 29.14

ρ=0.9
TS­FGLS 0.88 0.74 0.69 0.67 3.37 6.93 8.66 11.38
TS­OLS 0.88 0.75 0.72 0.70 3.41 7.64 10.66 15.80
PT­FGLS 0.89 0.91 0.94 0.95 3.40 11.17 19.57 31.87
PT­OLS 0.89 0.91 0.94 0.95 3.40 11.18 19.59 31.90

ρ=0.95
TS­FGLS 0.88 0.71 0.62 0.58 3.34 7.47 9.66 12.86
TS­OLS 0.88 0.73 0.66 0.64 3.38 8.40 12.77 20.78
PT­FGLS 0.89 0.90 0.92 0.94 3.35 11.15 19.58 31.93
PT­OLS 0.89 0.90 0.92 0.94 3.35 11.15 19.59 31.95

ρ=1.0
TS­OLS 0.88 0.67 0.56 0.47 3.29 7.71 10.22 13.75
TS­FGLS 0.88 0.70 0.62 0.56 3.33 8.86 14.48 25.67
PT­FGLS 0.89 0.86 0.86 0.85 3.29 10.99 19.33 31.52
PT­OLS 0.89 0.86 0.86 0.86 3.29 10.99 19.33 31.54
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Table A1-b. Coverage Rate and Average Length
of Forecasting Intervals (T = 100)

Coverage rate Average length
h=1 h=10 h=25 h=50 h=1 h=10 h=25 h=50

ρ=0.0
TS­FGLS 0.89 0.91 0.90 0.89 3.35 3.36 3.40 3.48
TS­OLS 0.90 0.91 0.90 0.90 3.36 3.38 3.42 3.50
PT­FGLS 0.89 0.91 0.90 0.89 3.35 3.36 3.40 3.48
PT­OLS 0.90 0.91 0.90 0.90 3.36 3.38 3.42 3.50

ρ=0.5
TS­FGLS 0.89 0.89 0.89 0.88 3.34 3.96 4.08 4.31
TS­OLS 0.89 0.89 0.89 0.88 3.36 4.00 4.12 4.37
PT­FGLS 0.89 0.89 0.89 0.88 3.34 3.96 4.08 4.31
PT­OLS 0.89 0.89 0.89 0.88 3.36 4.00 4.12 4.37

ρ=0.8
TS­FGLS 0.89 0.84 0.85 0.84 3.34 5.70 6.14 6.80
TS­OLS 0.89 0.85 0.85 0.85 3.36 5.85 6.39 7.20
PT­FGLS 0.88 0.87 0.87 0.87 3.37 7.35 10.24 14.22
PT­OLS 0.88 0.87 0.87 0.87 3.38 7.42 10.34 14.38

ρ=0.9
TS­FGLS 0.90 0.82 0.79 0.77 3.34 7.13 8.27 9.50
TS­OLS 0.90 0.82 0.81 0.79 3.36 7.39 8.95 10.77
PT­FGLS 0.90 0.91 0.92 0.93 3.37 10.11 16.40 24.91
PT­OLS 0.90 0.91 0.92 0.93 3.37 10.13 16.43 24.97

ρ=0.95
TS­FGLS 0.89 0.79 0.73 0.68 3.33 8.06 10.03 11.96
TS­OLS 0.89 0.80 0.75 0.70 3.35 8.43 11.25 14.64
PT­FGLS 0.90 0.90 0.92 0.94 3.34 10.61 17.62 27.09
PT­OLS 0.90 0.90 0.92 0.94 3.34 10.62 17.63 27.11

ρ=1.0
TS­OLS 0.89 0.76 0.65 0.55 3.29 8.71 11.62 14.48
TS­FGLS 0.89 0.77 0.68 0.60 3.31 9.21 13.71 20.27
PT­FGLS 0.90 0.88 0.87 0.86 3.29 10.60 17.69 27.29
PT­OLS 0.90 0.88 0.87 0.86 3.29 10.60 17.69 27.28
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